PROBLEM 4.43

KNOWN: Conduction in a one-dimensional (radial) cylindrical coordinate system with volumetric
generation.

FIND: Finite-difference equation for (a) Interior node, m, and (b) Surface node, n, with convection.
SCHEMATIC:
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(@) Interior node, m (b) Surface node with convection, n

ASSUMPTIONS: (1) Steady-state, one-dimensional (radial) conduction in cylindrical coordinates,
(2) Constant properties.
ANALYSIS: (a) The network has nodes spaced at equal Ar increments with m = 0 at the center;

hence, r = mAr (or nAr). The control volumeis V=27 r-Ar-/ = 27z(mAr)Ar-€. The energy
balance is Ejn +Eg =0a +0p +4V =0

k{b{r—%}ﬁ}M+ k{b{ﬁ%}ﬁ}m+q[Zz(mAr)AM] =0.
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Recognizing that r = mAr, canceling like terms, and regrouping find
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(b) The control volume for the surface node is V =27 r-(Ar/2)-¢. The energy balance is

Ein + Eg =0qq +Acony + 4V=0. Use Fourier’s law to express qq and Newton’s law of cooling for

Qcony to obtain
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Let r = nAr, cancel like terms and regroup to find
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COMMENTS: (1) Note that when m or n becomes very large compared to Y%, the finite-difference
equation becomes independent of m or n. Then the cylindrical system approximates a rectangular one.

(2) The finite-difference equation for the center node (m = 0) needs to be treated as a special case. The
control volume is

V= 7r(Ar/2)2 ¢ and the energy balance is
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Regrouping, the finite-difference equation is -T, + T, + =0.



