
PROBLEM 4.5 
 
KNOWN:  Boundary conditions on four sides of a rectangular plate. 
 
FIND:  Temperature distribution. 
 
SCHEMATIC: 
 

 
ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction, (2) Constant properties. 
 
ANALYSIS:  This problem differs from the one solved in Section 4.2 only in the boundary 
condition at the top surface.  Defining θ = T – T∞, the differential equation and boundary 
conditions are 
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The solution is identical to that in Section 4.2 through Equation (4.11), 
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To determine Cn, we now apply the top surface boundary condition, Equation (1d).  
Differentiating Equation (2) yields 
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PROBLEM 4.5 (Cont.) 
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Substituting this into Equation (1d) results in 
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where An = Cn(nπ/L)cosh(nπW/L).  The principles expressed in Equations (4.13) through (4.16) 
still apply, but now with reference to Equation (4) and Equation (4.14), we should choose 

sf(x) = q /k′′ , n
nπxg (x) = sin
L

.  Equation (4.16) then becomes 
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Thus 
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The solution is given by Equation (2) with Cn defined by Equation (5). 
 
 
 
 
 
 
 


