PROBLEM 2.65

KNOWN: Temperature distribution in a plane wall of thickness L experiencing uniform volumetric
heating ¢ having one surface (x = 0) insulated and the other exposed to a convection process

characterized by T, and h. Suddenly the volumetric heat generation is deactivated while convection
continues to occur.

FIND: (&) Determine the magnitude of the volumetric energy generation rate associated with the
initial condition, (b) On T-x coordinates, sketch the temperature distributions for the initial condition
(T <0), the steady-state condition (t — o), and two intermediate times; (c) On g5, - t coordinates,
sketch the variation with time of the heat flux at the boundary exposed to the convection process,

dy (L.t); caculate the corresponding value of the heat flux at t = 0; and (d) Determine the amount of

energy removed from the wall per unit area (J/mz) by the fluid stream as the wall cools from itsinitial
to steady-state condition.

SCHEMATIC:
T(x,0)=a+bx2 x(m) p = 7000 kg/m3
Insulated a=300°C b=-1.0x104°C/m2 Cp= 450 J/kg-K
boundary Gz0fort<0; g=0fort>0 k=90 W/m-K
. | ? [f Teo= 20°C
\_9 h = 1000 W/mZ2-K
X L=0.1m

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, and (3) Uniform internd
volumetric heat generation for t < 0.

ANALYSIS: (a) The volumetric heating rate can be determined by substituting the temperature
distribution for the initial condition into the appropriate form of the heat diffusion equation.

ﬂ(d_Tj+ﬂ:0 where T(x,0)=a+ bx 2
dx\dx ) k

9 0satx)+d=0=20+9=0
dx k k

§=—2kb=—2x90W/m-K (—1.O><104°C/ m2) —1.8x108W/m3 <

(b) The temperature distributions are shown in the sketch below.
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PROBLEM 2.65 (Cont.)

(c) The heat flux at the exposed surfacex = L, g (L,0), isinitially amaximum vaue and decreases

with increasing time as shown in the sketch above. The heat flux at t = 0 is equal to the convection
heat flux with the surface temperature T(L,0). See the surface energy balance represented in the
schematic.

o (L,0) = qisony (t = 0) = h(T(L,0)-T,; ) =1000W / m? . K (200 20)°C = 1.80x10° W/ m? <
where  T(L,0)=a+bL? =300°C-1.0x10%C/m?(0.1m)? = 200°C.

T(L,0) =a+ bx2
:—> Jeonv(t=0)
'
|
(d) The energy removed from the wall to the fluid asit cools from itsinitial to steady-state condition
can be determined from an energy balance on atime interval basis, Eqg. 1.12b. For theinitial state, the

wall hasthe temperature distribution T(x,0) = a+ bx2; for the fina state, the wall is at the temperature
of thefluid, T = T,. Wehave used T, asthe reference condition for the energy terms.
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vt =7.77x107 3/ m? <

COMMENTS: (1) Inthetemperature distributions of part (a), note these features. initial condition
has quadratic form with zero gradient at the adiabatic boundary; for the steady-state condition, the wall
has reached the temperature of the fluid; for all distributions, the gradient at the adiabatic boundary is
zero; and, the gradient at the exposed boundary decreases with increasing time.

(2) In thisthermodynamic analysis, we were able to determine the energy transferred during the
cooling process. However, we cannot determine the rate at which cooling of the wall occurs without
solving the heat diffusion equation.



