PROBLEM 2.36

KNOWN: Three-dimensional system — described by spherical coordinates (r,¢,0) — experiences
transient conduction and internal heat generation.

FIND: Heat diffusion equation.
SCHEMATIC: See Figure 2.13.
ASSUMPTIONS: (1) Homogeneous medium.

ANALYSIS: The differential control volume is V = dr-rsin6d¢-rd6, and the conduction terms are
identified in Figure 2.13. Conservation of energy requires
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The generation and storage terms, both representing volumetric phenomena, are

Eg =4V =g[dr-rsingdg-rdg] Et :ch%= [dr-rsingdg- rd@]c% (2,3)

Using a Taylor series expansion, we can write
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From Fourier’s law, the conduction heat rates have the following forms.
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Substituting Egs. (2), (3) and (4), (5), (6) into Eq. (1), the energy balance becomes
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Substituting Egs. (7), (8) and (9) for the conduction rates, find
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_%{ k[dr-rsingdg] 9}d9+q[dr rsinddg-rd@]= p[dr-rsinddg- rde]c% (11)

Dividing Eqg. (11) by the volume of the control volume, V, Eq. 2.29 is obtained.
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COMMENTS: Note how the temperature gradients in Egs. (7) - (9) are formulated. The numerator
is always 6T while the denominator is the dimension of the control volume in the specified coordinate
direction.




