PROBLEM 3.1

KNOWN: One-dimensional, plane wall separating hot and cold fluids at T, ; and T, 5,
respectively.

FIND: Temperature distribution, T(x), and heat flux, gy, interms of T, 1, T, 2, hg, hy, Kk
and L.
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ASSUMPTIONS: (1) One-dimensional conduction, (2) Steady-state conditions, (3) Constant

properties, (4) Negligible radiation, (5) No generation.

ANALYSIS: For the foregoing conditions, the general solution to the heat diffusion equation
is of the form, Equation 3.2,

T(X)=C1X+C2. (1)

The constants of integration, Cy and C,, are determined by using surface energy balance
conditions at x = 0 and x = L, Equation 2.34, and as illustrated above,
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For the boundary condition at x = 0, Equation (2), use Equation (1) to find
—k(C1+0)=hy[ Tp 1 —(C1-0+Cy)] (4)
and for the boundary condition at x = L to find
—k(C1+0)=hy[(CIL+Cp)-To2 | (5)
Multiply Eq. (4) by ho and Eq. %5) by hq, and add the equations to obtain C1. Then substitute
C4 into Eq. (4) to obtain Co. The results are
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From Fourier’s law, the heat flux is a constant and of the form

, dT Too,1=Teo,2




