
PROBLEM 4.85  
KNOWN:  Long bar with trapezoidal shape, uniform temperatures on two surfaces, and two insulated 
surfaces.  
FIND:  Heat transfer rate per unit length using finite-difference method with space increment of 
10mm.  
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Constant 
properties.  
ANALYSIS:  The heat rate can be found after the temperature distribution has been determined.  
Using the nodal network shown above with Δx = 10mm, nine finite-difference equations must be 
written.  Nodes 1-4 and 6-8 are interior nodes and their finite-difference equations can be written 
directly from Eq. 4.29.  For these nodes  
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For nodes 5 and 9 located on the diagonal, insulated boundary, the appropriate finite-difference 
equation follows from an energy balance on the control volume shown above (upper-right corner of 
schematic), in out a bE E q q 0− = + =& &  
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Since Δx = Δy, the finite-difference equation for nodes 5 and 9 is of the form  
 m-1,n m,n-1 m,nT T 2T 0        m 5,9.+ − = =       (2) 
 
The system of 9 finite-difference equations is first written in the form of Eqs. (1) or (2) and then 
written in explicit form for use with the Gauss-Seidel iteration method of solution; see Appendix D.  
 Node  Finite-difference equation      Gauss-Seidel form 
   1  T2+T2+T6+100-4T1 = 0  T1 = 0.5T2+0.25T6+25 
   2  T3+T1+T7+100-4T2 = 0  T2 = 0.25(T1+T3+T7)+25 
   3  T4+T2+T8+100-4T3 = 0  T3 = 0.25(T2+T4+T8)+25 
   4  T5+T3+T9+100-4T4 = 0  T4 = 0.25(T3+T5+T9)+25 
   5  100+T4-2T5 = 0   T5 = 0.5T4+50 
   6  T7+T7+25+T1-4T6 = 0   T6 = 0.25T1+0.5T7+6.25 
   7  T8+T6+25+T2-4T7 = 0   T7 = 0.25(T2+T6+T8)+6.25 
   8  T9+T7+25+T3-4T8 = 0   T8 = 0.25(T3+T7+T9)+6.25 
   9  T4+T8-2T9 = 0    T9 = 0.5(T4+T8)  
          Continued … 



PROBLEM 4.85 (Cont.)  
The iteration process begins after an initial guess (k = 0) is made.  The calculations are shown in the 
table below.  
 k T1 T2 T3 T4 T5 T6 T7 T8 T9(°C) 
 
 0 75 75 80 85 90 50 50 60 75 
 1 75.0 76.3 80.0 86.3 92.5 50.0 52.5 57.5 72.5 
 2 75.7 76.9 80.0 86.3 93.2 51.3 52.2 57.5 71.9 
 3 76.3 77.0 80.2 86.3 93.2 51.3 52.7 57.3 71.9 
 4 76.3 77.3 80.2 86.3 93.2 51.7 52.7 57.5 71.8 
 5 76.6 77.3 80.3 86.3 93.2 51.7 52.9 57.4 71.9 
 6 76.6 77.5 80.3 86.4 93.2 51.9 52.9 57.5 71.9  
Note that by the sixth iteration the change is less than 0.3°C; hence, we assume the temperature 
distribution is approximated by the last row of the table.  
The heat rate per unit length can be determined by evaluating the heat rates in the x-direction for the 
control volumes about nodes 6, 7, and 8.  From the schematic, find that  
 1 2 3q q q q′ ′ ′ ′= + +  
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Recognizing that Δx = Δy and substituting numerical values, find  

 ( ) ( ) ( )W 1q 20 57.5 25 52.9 25 51.9 25 K
m K 2

⎡ ⎤′ = − + − + −⎢ ⎥⋅ ⎣ ⎦
 

 
 q 1477 W/m.′ =          < 
 
COMMENTS:  (1) Recognize that, while the temperature distribution may have been determined to a 
reasonable approximation, the uncertainty in the heat rate could be substantial.  This follows since the 
heat rate is based upon a gradient and hence on temperature differences.  
(2) Note that the initial guesses (k = 0) for the iteration are within 5°C of the final distribution.  The 
geometry is simple enough that the guess can be very close.  In some instances, a flux plot may be 
helpful and save labor in the calculation.  
(3) In writing the FDEs, the iteration index (superscript k) was not included to simplify expression of 
the equations.  However, the most recent value of Tm,n is always used in the computations.  Note that 
this system of FDEs is diagonally dominant and no rearrangement is required. 


