
PROBLEM 2.53  
KNOWN:  Thin electrical heater dissipating 4000 W/m2 sandwiched between two 25-mm thick plates 
whose surfaces experience convection. 
 
FIND:  (a) On T-x coordinates, sketch the steady-state temperature distribution for -L ≤ × ≤ +L; 
calculate values for the surfaces x =  L and the mid-point, x = 0; label this distribution as Case 1 and 
explain key features; (b)  Case 2: sudden loss of coolant causing existence of adiabatic condition on 
the x = +L surface; sketch temperature distribution on same T-x coordinates as part (a) and calculate 
values for x = 0, ± L; explain key features; (c) Case 3: further loss of coolant and existence of 
adiabatic condition on the x = - L surface; situation goes undetected for 15 minutes at which time 
power to the heater is deactivated; determine the eventual (t → ∞) uniform, steady-state temperature 
distribution; sketch temperature distribution on same T-x coordinates as parts (a,b); and (d) On T-t 
coordinates, sketch the temperature-time history at the plate locations x = 0, ± L during the transient 
period between the steady-state distributions for Case 2 and Case 3; at what location and when will the 
temperature in the system achieve a maximum value? 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties, (3) No internal 
volumetric generation in plates, and (3) Negligible thermal resistance between the heater surfaces and 
the plates.  
ANALYSIS:  (a) Since the system is symmetrical, the heater power results in equal conduction fluxes 
through the plates.  By applying a surface energy balance on the surface x = +L as shown in the 
schematic, determine the temperatures at the mid-point, x = 0, and the exposed surface, x + L.  

  
 in outE E 0− =& &  

 ( ) ( )x conv x oq L q 0 where q L q / 2′′ ′′ ′′ ′′+ − = + =  

 ( )oq / 2 h T L T 0∞′′ ⎡ ⎤− + − =⎣ ⎦  

 ( ) ( )2 2
1 oT L q / 2h T 4000 W / m / 2 400 W / m K 20 C 25 C∞′′+ = + = × ⋅ + ° = °   < 

From Fourier’s law for the conduction flux through the plate, find T(0). 
 ( ) ( )x oq q / 2 k T 0 T L / L′′ ′′ ⎡ ⎤= = − +⎣ ⎦  

 ( ) ( ) ( )2
1 1 oT 0 T L q L / 2k 25 C 4000 W / m K 0.025m / 2 5 W / m K 35 C′′= + + = ° + ⋅ × × ⋅ = °  < 

 
The temperature distribution is shown on the T-x coordinates below and labeled Case 1.  The key 
features of the distribution are its symmetry about the heater plane and its linear dependence with 
distance. 
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(b) Case 2: sudden loss of coolant with the existence of an adiabatic condition on surface x = +L.  For 
this situation, all the heater power will be conducted to the coolant through the left-hand plate.  From a 
surface energy balance and application of Fourier’s law as done for part (a), find  

 ( ) 2 2
2 oT L q / h T 4000 W / m / 400 W / m K 20 C 30 C∞′′− = + = ⋅ + ° = °   < 

 ( ) ( ) 2
2 2 oT 0 T L q L / k 30 C 4000 W / m 0.025 m / 5 W / m K 50 C′′= − + = ° + × ⋅ = °  < 

The temperature distribution is shown on the T-x coordinates above and labeled Case 2.  The 
distribution is linear in the left-hand plate, with the maximum value at the mid-point.  Since no heat 
flows through the right-hand plate, the gradient must zero and this plate is at the maximum 
temperature as well.  The maximum temperature is higher than for Case 1 because the heat flux 
through the left-hand plate has increased two-fold. 
 
(c) Case 3: sudden loss of coolant occurs at the x = -L surface also.  For this situation, there is no heat 
transfer out of either plate, so that for a 15-minute period, Δto, the heater dissipates 4000 W/m2 and 
then is deactivated.  To determine the eventual, uniform steady-state temperature distribution, apply 
the conservation of energy requirement on a time-interval basis, Eq. 1.12b.  The initial condition 
corresponds to the temperature distribution of Case 2, and the final condition will be a uniform, 
elevated temperature Tf = T3 representing Case 3.  We have used T∞ as the reference condition for the 
energy terms.  
 in out gen st f iE E E E E E′′ ′′ ′′ ′′ ′′ ′′− + = Δ = −        (1) 

Note that in outE E 0′′ ′′− = , and the dissipated electrical energy is 

 ( )2 6 2
gen o oE q t 4000 W / m 15 60 s 3.600 10 J / m′′ ′′= Δ = × = ×     (2) 

For the final condition, 

( )[ ] ( )[ ]
[ ]

3
f f f

4 2
f f

E c 2L T T 2500kg / m 700J / kg K 2 0.025m T 20 C
8.75 10 T 20 J / mE
ρ ∞′′ = − = × ⋅ × − °

= × −′′
 (3) 

where Tf = T3, the final uniform temperature, Case 3.  For the initial condition, 

 ( )[ ] ( )[ ] ( )[ ]{ }L 0 L
i 2 2 2L L 0

E c T x T dx c T x T dx T 0 T dxρ ρ
+ +

∞ ∞ ∞− −
′′ = − = − + −∫ ∫ ∫  (4) 

where ( )2T x  is linear for –L ≤ x ≤ 0 and constant at ( )2T 0  for 0 ≤ x ≤ +L. 

 ( ) ( ) ( ) ( )2 2 2 2T x T 0 T 0 T L x / L L x 0⎡ ⎤= + − − ≤ ≤⎣ ⎦  

 ( ) [ ]2T x 50 C 50 30 Cx / 0.025m= ° + − °  

 ( )2T x 50 C 800x= ° +          (5) 

Substituting for ( )2T x ,  Eq. (5), into Eq. (4) 
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 [ ] ( )0
i 2L

E c 50 800x T dx T 0 T Lρ ∞ ∞−
⎧ ⎫′′ ⎡ ⎤= + − + −⎨ ⎬⎣ ⎦⎩ ⎭∫  

 ( )
02

i 2
L

E c 50x 400x T x T 0 T Lρ ∞ ∞
−

⎧ ⎫⎪ ⎪⎡ ⎤′′ ⎡ ⎤= + − + −⎨ ⎬⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
 

 ( ){ }2
i 2E c 50L 400L T L T 0 T Lρ ∞ ∞⎡ ⎤′′ ⎡ ⎤= − − + + + −⎣ ⎦⎢ ⎥⎣ ⎦

 

 ( ){ }i 2E cL 50 400L T T 0 Tρ ∞ ∞′′ = + − − + −  

 { }3
iE 2500 kg / m 700 J / kg K 0.025 m 50 400 0.025 20 50 20 K′′ = × ⋅ × + − × − + −  

 6 2
iE 2.188 10 J / m′′ = ×         (6) 

Returning to the energy balance, Eq. (1), and substituting Eqs. (2), (3) and (6), find Tf = T3. 

 [ ]6 2 4 6 2
33.600 10 J / m 8.75 10 T 20 2.188 10 J / m× = × − − ×  

 ( )3T 66.1 20 C 86.1 C= + ° = °         < 
The temperature distribution is shown on the T-x coordinates above and labeled Case 3.  The 
distribution is uniform, and considerably higher than the maximum value for Case 2. 
 
(d) The temperature-time history at the plate locations x = 0, ± L during the transient period between 
the distributions for Case 2 and Case 3 are shown on the T-t coordinates below. 
 

 
 
Note the temperatures for the locations at time t = 0 corresponding to the instant when the surface       
x = - L becomes adiabatic.  These temperatures correspond to the distribution for Case 2.  The heater 
remains energized for yet another 15 minutes and then is deactivated.  The midpoint temperature,  
T(0,t), is always the hottest location and the maximum value slightly exceeds the final temperature T3. 


