
PROBLEM 3.66

KNOWN: Sphere of radius ri, covered with insulation whose outer surface is exposed to a

convection process.

FIND: Critical insulation radius, rcr.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional radial (spherical)
conduction, (3) Constant properties, (4) Negligible radiation at surface.

ANALYSIS: The heat rate follows from the thermal circuit shown in the schematic,
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If q is a maximum or minimum, we need to find the condition for which
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It follows that
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The second derivative, evaluated at r = rcr, is
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Hence, it follows no optimum Rtot exists. We refer to this condition as the critical insulation

radius. See Example 3.6 which considers this situation for a cylindrical system.


