PROBLEM 2.8

KNOWN: Temperature dependence of the thermal conductivity, k(T), for heat transfer through a
plane wall.

FIND: Effect of k(T) on temperature distribution, T(x).

ASSUMPTIONS: (1) One-dimensiona conduction, (2) Steady-state conditions, (3) No internal heat
generation.

ANALYSIS: From Fourier's law and the form of k(T),
dT dT
v =-k —=—(kg+al )—. 1
Ox ax ( o )dx (1)

The shape of the temperature distribution may be inferred from knowledge of d2T/dx2 = d(dT/dx)/dx.
Since qy isindependent of x for the prescribed conditions,
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COMMENTS: The shape of the distribution could also be inferred from Eq. (1). Since T decreases
with increasing X,

a>0: kdecreaseswith increasing x = > | dT/dx | increases with increasing x
a=0: k=kg=>dT/dx isconstant

a<0: kincreaseswithincreasing x = > | dT/dx | decreases with increasing x.



