
PROBLEM 3.43

KNOWN: Steady-state temperature distribution of convex shape for material with k = ko(1 +

T) where  is a constant and the mid-point temperature is To higher than expected for a

linear temperature distribution.

FIND: Relationship to evaluate  in terms of To and T1, T2 (the temperatures at the

boundaries).

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) No
internal heat generation, (4)  is positive and constant.

ANALYSIS: At any location in the wall, Fourier’s law has the form
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Since xq is a constant, we can separate Eq. (1), identify appropriate integration limits, and

integrate to obtain
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We could perform the same integration, but with the upper limits at x = L/2, to obtain
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Setting Eq. (3) equal to Eq. (4), substituting from Eq. (5) for TL/2, and solving for , it

follows that
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