
PROBLEM 2.40  
KNOWN:  Steady-state temperature distribution in a one-dimensional wall of thermal 
conductivity, T(x) = Ax3 + Bx2 + Cx + D. 
 
FIND:  Expressions for the heat generation rate in the wall and the heat fluxes at the two wall 
faces (x = 0,L).  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat flow, (3) 
Homogeneous medium.  
ANALYSIS:  The appropriate form of the heat diffusion equation for these conditions is  
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Hence, the generation rate is  
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dx dx dx
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which is linear with the coordinate x.  The heat fluxes at the wall faces can be evaluated from 
Fourier’s law,  
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using the expression for the temperature gradient derived above.  Hence, the heat fluxes are:  
Surface x=0:  
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Surface x=L:  
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COMMENTS:  (1) From an overall energy balance on the wall, find  
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From integration of the volumetric heat rate, we can also find & ′′Eg  as 
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