
 
PROBLEM 4.3 

 
KNOWN:  Temperature distribution in the two-dimensional rectangular plate of Problem 4.2. 
 
FIND:  Expression for the heat rate per unit thickness from the lower surface (0 ≤ x ≤ 2, 0) and result 
based on first five non-zero terms of the infinite series. 
 
SCHEMATIC: 

 
ASSUMPTIONS:  (1) Two-dimensional, steady-state conduction, (2) Constant properties. 
 
ANALYSIS:  The heat rate per unit thickness from the plate along the lower surface is 
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where from the solution to Problem 4.2, 
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Evaluate the gradient of θ from Eq. (2) and substitute into Eq. (1) to obtain 
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To evaluate the first five, non-zero terms, recognize that since cos(nπ) = 1 for n = 2, 4, 6 ..., only the n-
odd terms will be non-zero.  Hence, 
 
  Continued … 



 
PROBLEM 4.3 (Cont.) 
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COMMENTS:  If the foregoing procedure were used to evaluate the heat rate into the upper surface,  
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However, with coth(nπ/2) ≥ 1, irrespective of the value of n, and with ( )n 1
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divergent series, the complete series does not converge and inq′ → ∞ .  This physically untenable 
condition results from the temperature discontinuities imposed at the upper left and right corners. 


