
PROBLEM 3.111

KNOWN: Surface conditions and thickness of a solar collector absorber plate. Temperature of
working fluid.

FIND: (a) Differential equation which governs plate temperature distribution, (b) Form of the
temperature distribution.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Adiabatic
bottom surface, (4) Uniform radiation flux and convection coefficient at top, (5) Temperature of
absorber plate at x = 0 corresponds to that of working fluid.

ANALYSIS: (a) Performing an energy balance on the differential control volume,
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From Fourier’s law, the conduction heat rate per unit width is
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(b) Defining 2 2 2 2T T ,d T/dx d / dx    and the differential equation becomes,
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It is a second-order, differential equation with constant coefficients and a source term, and its general
solution is of the form
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Appropriate boundary conditions are:
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