
PROBLEM 2.55

KNOWN: Dimensions of one-dimensional plane wall, initial and boundary conditions.

FIND: (a) Differential equation, boundary and initial conditions used to determine T(x,t), (b) Sketch
of the temperature distributions for the initial condition, the steady-state condition, and for two

intermediate times, (c) Sketch of the heat flux " ( , )xq x t at the planes x = 0, -L, and +L, (d) Sketch of the

temperature distributions for the initial condition, the steady-state condition, and for two intermediate

times for h1 twice the previous value, (e) Sketch of the heat flux " ( , )xq x t at the planes x = 0, -L, and +L

for h1 twice the previous value.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional heat transfer, (2) Constant properties, (3) No internal
generation.

ANALYSIS: The differential equation may be found by simplifying the heat equation, Equation
2.21. The simplification yields
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(b) The temperature distributions are shown in the sketch below.
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The temperature is uniform at the initial time, as required by the initial condition listed in part (a).
Note the temperature gradients at the exposed surfaces are large at early times and decrease in
magnitude as the convective heat flux is reduced, as required by the boundary conditions listed in part
(a). The steady-state temperature distribution is linear. At the steady state,

1 ,1 2 ,2( ) ( )
dT

k h T T x L h T x L T
dx

               

(c) At any time, the heat fluxes at x =  L are identical. The initial heat flux value is " ( )xq x L  =

h1[T,1 – To] = h2[To - T,2]. As time progresses, thermal effects propagate to x = 0, resulting in a
uniform heat flux distribution throughout the wall thickness.

(d) A comparison of the transient response of the system for a doubled value of h1 is shown in the
RHS sketch below. Note that for all but the initial time, temperatures throughout the wall are higher
relative to the case associated with the original value of h1 (LHS). At intermediate times, temperature
gradients at x = -L are larger than temperature gradients at x = +L due to the larger convection heat
transfer coefficient at the left surface.
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(e) The heat flux histories are shown in the plot below as dashed lines. The results for part (c) are
replicated as solid lines. Note that at the initial time, the heat flux at the left face is doubled relative to
part (c) because the heat transfer coefficient is doubled. The heat flux at the initial time for the right
face is the same as in part (c). The heat fluxes at the three planes asymptotically approach the steady-
state value given by
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Note that the overall heat flux is not doubled at the steady state since the temperature at the right face
(T(x =  L)) is greater for the case of the doubled LHS heat transfer coefficient, h1.
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