
PROBLEM 3.98 
 
KNOWN:  Radii and thermal conductivities of reactor fuel element and cladding.  Fuel heat generation 
rate.  Temperature and convection coefficient of coolant. 
 
FIND:  (a) Expressions for temperature distributions in fuel and cladding, (b) Maximum fuel element 
temperature for prescribed conditions, (c) Effect of h on temperature distribution. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible contact 
resistance, (4) Constant properties. 
 
ANALYSIS:  (a) From Eqs. 3.54 and 3.28, the heat equations for the fuel (f) and cladding (c) are 
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Hence, integrating both equations twice, 
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The corresponding boundary conditions are: 
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Note that Eqs. (7) and (8) are obtained from surface energy balances at r1 and r2, respectively.  Applying 
Eq. (5) to Eq. (1), it follows that C1 = 0.  Hence, 
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From Eq. (6), it follows that 
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Also, from Eq. (7), 
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 or, substituting for C3 and solving for C4 

 
2 2

1 1
4 2

2 c

qr qr
C ln r T

2r h 2k ∞= + +
& &

 (12) 

Substituting Eqs. (11) and (12) into (10), it follows that 
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Substituting Eq. (13) into (9), 
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Substituting Eqs. (11) and (12) into (4), 
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(b) Applying Eq. (14) at r = 0, the maximum fuel temperature for h = 2000 W/m2⋅K is 
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(c) Temperature distributions for the prescribed values of h are as follows: 
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Clearly, the ability to control the maximum fuel temperature by increasing h is limited, and even for h → 
∞, Tf(0) exceeds 1000 K.  The overall temperature drop, Tf(0) - T∞, is influenced principally by the low 
thermal conductivity of the fuel material. 
 

COMMENTS:  For the prescribed conditions, Eq. (14) yields, Tf(0) - Tf(r1) = 2
1 fqr 4k&  = (2×108 

W/m3)(0.006 m)3/8 W/m⋅K = 900 K, in which case, with no cladding and h → ∞, Tf(0) = 1200 K.  To 
reduce Tf(0) below 1000 K for the prescribed material, it is necessary to reduce q& . 


