
PROBLEM 5.38

KNOWN: Diameter of highly polished aluminum rod. Temperature of rod initially and at two later
times. Room air temperature.

FIND: Values of constants C and n in Equation 5.26. Plot rod temperature vs. time for varying and
constant heat transfer coefficients.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties, (2) Radiation negligible because rod is highly polished,
(3) Lumped capacitance approximation is valid.

PROPERTIES: Table A.1, Aluminum (T = 328 K): c = 916 J/kgK, = 2702 kg/m3, k = 238
W/mK.

ANALYSIS: If the heat transfer coefficient is given by Equation 5.26, then the temperature as a
function of time is given by Equation 5.28:
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where T T   and As,c is the area exposed to convection, As,c = πDL. Since the rod temperature is

known at two different times, Equation (1) can be evaluated at these two times, making it possible to
solve for the two unknowns, C and n. The two equations are
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(2a,b)

These equations cannot be explicitly solved for C and n. They can be numerically solved in this form,
using IHT or some other software, or they can be further manipulated to solve for the times:
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(3a,b)

where we have used V/As,c = D/4. Taking the ratio of Equations (3a) and (3b) yields
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PROBLEM 5.38 (Cont.)

This can be iteratively or numerical solved for n, to find n = 0.25. Then C can be determined from
Equation (3a) or (3b):
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2 1.252.8 W/m KC   , n = 0.25 <

Now that these constants are known, the validity of the lumped capacitance approximation can
checked. The maximum heat transfer coefficient occurs at the initial time,

 
0.252 1.25 2( ) 2.8 W/m K (90 20)K 8.1 W/m Knh C T T      

Thus, using the conservative definition, Bi = hD/2k = 6 × 10-4. The lumped capacitance approximation
is valid.

The heat transfer coefficient corresponding to a rod temperature of   / 2iT T T  = 55C is

 
0.252 1.25 2( ) 2.8 W/m K (55 20)K 6.8 W/m Knh C T T      

The plot below shows the rod temperature as a function of time using Equation (1) above for
variable heat transfer coefficient, as well as the rod temperature assuming the constant value
of h = 6.8 W/m2K, using text Equation 5.6.
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COMMENTS: (1) Since the heat transfer coefficient is temperature difference-dependent (variable
h), the initial cooling rates are larger when this dependence is accounted for. As the temperature
difference decreases, the variable h case cools slower relative to the constant h case. (2) The
discrepancy between the variable and constant heat transfer coefficient cases is not large under these
conditions. The difference would be greater if n were larger.


