
PROBLEM 5.62

KNOWN: One-dimensional convective heating of an L/ro = 20 cylinder with Bi = 1 for a
dimensionless time of Fo1.

FIND: (a) Sketch of the dimensionless centerline and surface temperatures of the cylinder as a
function of dimensionless time over the range 0 < Fo1 < Fo < . Relative value of Fo2 needed to
achieve a steady-state centerline temperature equal to the centerline temperature at Fo1. (b) Analytical
expression for, and value of Fo = Fo2 - Fo1 for Bi = 1, Fo1 > 0.2, Fo2 > 0.2. (c) Value of Fo for Bi
= 0.01, 0.1, 10, 100 and .

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) Approximate, one-
term solutions are valid.

ANALYSIS: (a) A sketch of the dimensionless centerline and surface temperatures is shown below.
Note that, at Fo1, the surface of the cylinder will be warm (smaller ) relative to the centerline since
temperature gradients within the cylinder are significant (Bi = 1). At the curtailment of heating (Fo1),
the surface temperature cools rapidly while warm temperatures continue to propagate toward the
centerline, slowly heating the centerline until a steady-state, isothermal condition is eventually
reached.

<

Based on the sketch above, one could achieve a steady-state centerline temperature equal to the
centerline temperature at Fo1 by reducing the duration of convective heating to Fo2, as shown in the
sketch below.
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Hence, Fo2 < Fo1. <

(b) Using the approximate solutions of Sections 5.6.2 and 5.6.3, and noting that the steady-state
temperature of the cylinder is uniform and related to the energy transferred to the cylinder,
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Substituting Eqs. 5.52c and 5.54 into Eq. (1) yields
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which may be simplified to
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From Table 5.1, 1 = 1.2558 rad at Bi = 1, and from Table B.4, J1(1) = 0.512. Hence,
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(c) The expression for Fo may be evaluated for a range of Bi, resulting in the following.
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Bi 1 Fo <

0.01 0.1412 -0.1250
0.1 0.4417 -0.1255
1 1.2558 -0.1294
10 2.1795 -0.1406
100 2.3809 -0.1447
 2.4050 -0.1452

COMMENTS: (1) Note that the dimensionless temperature,  * 2
1 1expo C Fo   , is defined in a

manner such that for cylinder heating, increases in actual temperature correspond to decreases in the
dimensionless temperature. (2) The dimensionless time lag, Fo, is weakly-dependent on the value of
the Biot number and is independent of the heating time. Hence, a general rule-of-thumb is that a time
lag of Fo  - 0.13 should be specified in order to achieve an ultimate centerline temperature equal to
that predicted at Fo1 for convective heating or cooling. (3) For applications such as materials or food
processing, where a certain minimum centerline temperature is desired, assuming that Fo1 (as
determined by Eq. 5.52c is the appropriate processing or cooking time can result in significant over-
heating of the material or food, especially at small Fourier numbers. (4) Significant energy and time
savings can be realized by reducing the processing or cooking time from Fo1 to Fo2.


