
PROBLEM 2.35  
KNOWN:  Three-dimensional system – described by cylindrical coordinates (r,φ,z) – 
experiences transient conduction and internal heat generation.  
FIND:  Heat diffusion equation.  
SCHEMATIC:  See also Fig. 2.12. 

 
 
ASSUMPTIONS:  (1) Homogeneous medium.  
ANALYSIS:  Consider the differential control volume identified above having a volume 
given as V = dr⋅rdφ⋅dz.  From the conservation of energy requirement,  
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The generation and storage terms, both representing volumetric phenomena, are  
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Using a Taylor series expansion, we can write  
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Using Fourier’s law, the expressions for the conduction heat rates are  
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Note from the above, right schematic that the gradient in the φ-direction is ∂T/r∂φ and not 
∂T/∂φ.  Substituting Eqs. (2), (3) and (4), (5), (6) into Eq. (1),  
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Substituting Eqs. (7), (8) and (9) for the conduction rates, find  
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Dividing Eq. (11) by the volume of the CV, Eq. 2.26 is obtained.  
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