PROBLEM 3.125

KNOWN: Dimensions, end temperatures and volumetric heating of wire leads. Convection coefficient
and ambient temperature.

FIND: (a) Equation governing temperature distribution in the leads, (b) Form of the temperature
distribution.

SCHEMATIC:

P=2(W+t)
A= Wit

ASSUMPTIONS: (1) Steady-state, (2) One-dimensional conduction in x, (3) Uniform volumetric
heating, (4) Uniform h (both sides), (5) Negligible radiation, (6) Constant properties.

ANALYSIS: (a) Performing an energy balance for the differential control volume,
Ein —Eout +Eg =0 dx —Ox+dx —ddcony +GdV =0
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(b) With a reduced temperature definedas ® =T —T, —(qAC/hP) and m? = hP/KA. , the differential
equation may be rendered homogeneous, with a general solution and boundary conditions as shown
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COMMENTS: If q is large and h is small, temperatures within the lead may readily exceed the
prescribed boundary temperatures.



