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P3.1 Discuss Newton’s second law (the linear momentum relation) in these three forms: 

∑F = ma ∑F = d
dt
(mV) ∑F = d

dt
Vρ dυ

system
∫











  

Solution: These questions are just to get the students thinking about the basic laws of 
mechanics. They are valid and equivalent for constant-mass systems, and we can make use of 
all of them in certain fluids problems, e.g. the #1 form for small elements, #2 form for rocket 
propulsion, but the #3 form is control-volume related and thus the most popular in this 
chapter. 

 

P3.2 Consider the angular-momentum relation in the form 

∑MO =
d
dt

(r × V)ρ dυ
system
∫












 

What does r mean in this relation? Is this relation valid in both solid and fluid mechanics? Is 
it related to the linear-momentum equation (Prob. 3.1)? In what manner? 

Solution: These questions are just to get the students thinking about angular momentum 
versus linear momentum. One might forget that r is the position vector from the moment-
center O to the elements ρ  dυ where momentum is being summed. Perhaps rO is a better 
notation. 

 

P3.3 For steady laminar flow through a long tube (see Prob. 1.14), the axial velocity 
distribution is given by u = C(R2 − r2), where R is the tube outer radius and C is a constant. 
Integrate u(r) to find the total volume flow Q through the tube. 

Solution: The area element for this axisymmetric flow is dA = 2π r dr. From Eq. (3.7), 

Q = u  dA = C
0

R

∫ (R2 − r2)2πr dr = π
2
CR4 Ans.∫  
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P3.4 A fire hose has a 12.5-cm inside diameter and is flowing at 2.27 m3/min.  The flow 
exits through a nozzle contraction at a diameter Dn.   For steady flow, what should Dn be, in 
cm, to create an exit velocity of 25 m/s? 
 
Solution:   This is a straightforward one-dimensional steady-flow continuity problem.  

2.27 m3/min = 0.038 m3/s; 

The hose diameter (12.5 cm) would establish a hose average velocity of 9.8 ft/s, but we don’t 
really need this.  Go directly to the volume flow: 

Q = 0.038 m3 /s = AnVn =
π
4
Dn

2 (25 m
s

) ; Solve for Dn ≈ 4.4 cm Ans.  

 

P3.5 Water at 20°C flows through a 12.5-cm-diameter smooth pipe at a high Reynolds 
number, for which the velocity profile is given by  u  ≈  Uo(y/R)1/8, where Uo is the centerline 
velocity, R is the pipe radius, and y is the distance measured from the wall toward the centerline.  
If the centerline velocity is 7.62 m/s, estimate the volume flow rate in m3 per minute. 
 
Solution:  The formula for average velocity in this power-law case was given in Example 3.4: 

  

  

Vav = Uo
2

(1+m)(2+m)
=Uo

2
(1+1 / 8)(2+1 / 8)

= 0.837Uo = 0.837(7.62) = 6.38 m
s

Thus Q =Vav Apipe = [6.38 m
s

] π(6.25×10–2  m)2 = 0.078 m3

s
≈ 4.7 m3

min
Ans.

 

 

P3.6 Given the simplified firefighting nozzle model in P3.6, find the position of the  
nozzle  


R,  exit velocity 

 


Vnozzle ,  and 

 


R×

Vnozzle when considering with respect to given 

coordinates. 
 

Fig. P3.6 
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Solution: From the given figure,  

R  is position vector from point O to A. 

 


R = l2 sinφ cosθ  


i + l2 sinφ sinθ  


j + (l1 + l2 cosφ)


k


Vnozzle =Vnozzle (sinφ cosθ  


i + sinφ sinθ  


j + cosφ


k )

 

 where Vnozzle is equal to exit speed of outflow from the nozzle. 

 


R×

Vnozzle =


i

l2 sφ cθ
Vnozzle sφ cθ


j

l2 sφsθ
Vnozzle sφsθ


k

l1 + l2 cφ
Vnozzle cφ

= −Vnl1 sφsθ  

i +Vnl1 sφcθ  


j

 

where sφ = sinφ
cφ = cosφ
sθ = sinθ
cθ = cosθ

for simplification.








 

 

P3.7  To calculate the loss or gain of hydraulic oil in Fig. P3.7, we need to select the 
problem’s control volume. Select a control volume and show how to obtain your solution. 

 

Solution: This problem is about conservation of mass under unsteady flow. Control volume 
selected will definitely affect solutions for the problem. However, the question is about loss or 
gain hydraulic fluid in the accumulator. Suppose we select the control volume as follows: 
 

 

This selection would include air trapped in the control volume. But if we assume that density 
of the air in the control volume does not change as much, we would have 

 

∂
∂t

ρ dV
cv∫ =

∂
∂t
(ρV ) = m = min – mout  
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Suppose we select the control volume as follows. 

 

We would not have to consider the air; then the solution would be 

∂
∂t

ρ dV = ρ
∂V
∂tcv∫ =

∂V
∂t

=Qin –Qout  

Since the hydraulic fluid density does not change. 
 

P3.8 When a gravity-driven liquid jet issues 
from a slot in a tank, as in Fig. P3.8, an 
approximation for the exit velocity 
distribution is  where h is the 
depth of the jet centerline. Near the slot, the 
jet is horizontal, two-dimensional, and of 
thickness 2L, as shown. Find a general 
expression for the total volume flow Q 
issuing from the slot; then take the limit of 
your result if  

 
Fig. P3.8 

Solution: Let the slot width be b into the paper. Then the volume flow from Eq. (3.7) is 

Q = udA = [2g(h − z)]1/2 bdz = 2b
3
√

−L

+L

∫ (2g)[(h+ L)3/2 − (h − L)3/2 ] Ans.∫  

In the limit of  this formula reduces to  
 

P3.9 A spherical tank, of diameter 35 cm, is leaking air through a 5-mm-diameter hole in 
its side.  The air exits the hole at 360 m/s and a density of 2.5 kg/m3.  Assuming uniform 
mixing, (a) find a formula for the rate of change of average density in the tank; and (b) 
calculate a numerical value for (dρ/dt) in the tank for the given data. 

Solution:   If the control volume surrounds the tank and cuts through the exit flow, 

 

dm
dt
|system = 0 =

d
dt
(ρ tankυtank ) + mout = υtank

d
dt
(ρ tank ) + (ρAV )out

Solve for d
dt
(ρ tank ) = − (ρAV )out

υtank
Ans.(a)

 

(b)  For the given data, we calculate 

dρ tank
dt

= − (2.5 kg / m
3)[(π / 4)(0.005m)2 ](360m / s)
(π / 6)(0.35m)3

= −0.79 kg / m
3

s
Ans.(b)  
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P3.10 Three pipes steadily deliver water at 20°C to a large exit pipe in Fig. P3.10. The 
velocity V2 = 5 m/s, and the exit flow rate Q4 = 120 m3/h. Find (a) V1; (b) V3; and 
(c) V4 if it is known that increasing Q3 by 20% would increase Q4 by 10%. 

Solution: (a) For steady flow we have Q1 + Q2 + Q3 = Q4, or 

V1A1 +V2A2 +V3A3 =V4A4  (1) 

 

Fig. P3.10 

Since 0.2Q3 = 0.1Q4, and Q4 = (120 m3/h)(1 h/3600 s) = 0.0333 m3/s, 

V3 =
Q4

2A3
=

(0.0333 m3/s)
π
2

(0.062 )
= 5.89 m / s Ans. (b)  

Substituting into (1), 

V1
π
4






(0.042 )+ (5) π

4






(0.052 )+ (5.89) π

4






(0.062 ) = 0.0333 V1 = 5.45 m / s Ans. (a) . 

From mass conservation, Q4 = V4A4 

(0.0333 m3/s) =V4 (π )(0.062 )/4 V4 = 5.24 m / s Ans. (c)  
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P3.11 A laboratory test tank contains 
seawater of salinity S and density ρ. Water 
enters the tank at conditions (S1, ρ1, A1, V1) 
and is assumed to mix immediately in the 
tank. Tank water leaves through an outlet A2 
at velocity V2. If salt is a “conservative” 
property (neither created nor destroyed), use 
the Reynolds transport theorem to find an 
expression for the rate of change of salt mass 
Msalt within the tank. 

 

 

Solution: By definition, salinity S = ρsalt/ρ. Since salt is a “conservative” substance (not 
consumed or created in this problem), the appropriate control volume relation is 

 

dMsalt

dt
|system=

d
dt

ρs d
CV
∫ υ









+S m

2
−S1 m1

= 0  

or: dMs
dt |CV= S1ρ1A1V1 − SρA2V2 Ans.  

 

 
3.12 Water flowing through an 8-cm-diameter pipe enters a porous section, as in  
Fig. P3.12, which allows a uniform radial velocity vw through the wall surfaces for a 
distance of 1.2 m. If the entrance average velocity V1 is 12 m/s, find the exit velocity V2 if 
(a) vw = 15 cm/s out of the pipe walls; (b) vw = 10 cm/s into the pipe. (c) What value of vw 
will make V2 = 9 m/s? 

 

Fig. P3.12 

Solution: (a) For a suction velocity of vw = 0.15 m/s, and a cylindrical suction surface area, 

Aw = 2π(0.04)(1.2) = 0.3016 m2  

Q1 =Qw +Q2  

(12)(π )(0.082 )/4 = (0.15)(0.3016)+V2 (π )(0.082 )/4 V2 = 3 m / s Ans. (a)  

(b) For an injection velocity into the pipe, vw = 0.10 m/s, Q1 + Qw = Q2, or: 

   (12)(π )(0.082 )/4+ (0.10)(0.3016) = V2(π )(0.082 )/4 V2 = 18 m / s Ans. (b)  

(c) Setting the outflow V2 to 9 m/s, the wall suction velocity is, 
(12)(π )(0.082 )/4 = (vw )(0.3016)+ (9)(π )(0.082 )/4 vw = 0.05 m / s = 5 cm / s out  
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P3.13 The inlet section of a vacuum cleaner is a rectangle, 2.5 cm by 12.5 cm. The blower is 
able to provide suction at 700 L/min. (a) What is the average velocity at the inlet, in m/s?  (b) 
If conditions are sea level standard, what is the mass flow of air, in kg/s? 
 
Solution:  (a) Convert 700 L/min to  1.167 ×10−2  m3 / s .  Then the inlet velocity is 
 

   
Vinlet =

Q
Ainlet

=
1.167 ×10−2  m3 / s

(2.5×10−2 )(12.5×10−2 )
= 3.73 m

s
Ans.(a)  

 
(b) At sea level, ρair = 1.2255 kg/m3. Then 
 

    
mair = ρairQ = (1.2255 kg

m3
)(0.01167 m3

s
) = 0.0143 kg

s
Ans.(b)  

_______________________________________________________________________ 
 
P3.14 The pipe flow in Fig. P3.14 fills a cylindrical tank as shown. At time t = 0, the water depth 
in the tank is 30 cm. Estimate the time required to fill the remainder of the tank. 

 

Fig. P3.14 

Solution: For a control volume enclosing the tank and the portion of the pipe below the tank, 

 

d
dt

ρ dv∫ + mout − min = 0  

ρπR2 dh
dt
+ (ρAV )out − (ρAV )in = 0  

   

dh
dt

=
4

998(π )(0.752 )
998 π

4








(0.122 )(2.5−1.9)









= 0.0153 m/s,

Δt = 0.7/0.0153= 46 s Ans.
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P3.15 The cylindrical container in Fig. 

P3.15 is 20 cm in diameter and has a 

conical contraction at the bottom with an 

exit hole 3 cm in diameter. The tank 

contains fresh water at standard sea-level 

conditions.   If the water surface is falling 

at the nearly steady rate  dh/dt ≈ −0.072 

m/s, estimate the average velocity  V  from 

the bottom exit. 
 
 

 

 
 
Solution:  We could simply note that dh/dt is the same as the water velocity at the surface 
and use Q1 = Q2, or, more instructive, approach it as a control volume problem.  Let the 
control volume encompass the entire container.  Then the mass relation is 

 

dm
dt
|system = 0 =

d
dt
( ρ dυ) + mout
CV
∫ =

d
dt
(υcone+ρ

π
4
D2h) |+ ρ π

4
Dexit
2 V ,

or : ρ π
4
D2 dh

dt
+ ρ

π
4
Dexit
2 V= 0 Cancel ρ π

4
: V = ( D

Dexit

)2 (− dh
dt
)

Introduce the data : V = (20cm
3cm

)2[−(−0.072 m
s
)] = 3.2 m

s
Ans.

 

 

P3.16 The open tank in the figure contains 
water at 20°C. For incompressible flow, (a) 
derive an analytic expression for dh/dt in 
terms of (Q1, Q2, Q3). (b) If h is constant, 
determine V2 for the given data if V1 = 3 m/s 
and Q3 = 0.01 m3/s.  

Solution: For a control volume enclosing the tank, 

d
dt

ρ dυ
CV
∫









+ ρ(Q2 −Q1 −Q3) = ρ

πd2

4
dh
dt
+ ρ(Q2 −Q1 −Q3),  

 

If h is constant, then 

Q2 =Q1 +Q3 = 0.01+
π
4
(0.05)2(3.0) = 0.0159 = π

4
(0.07)2V2,  

solve V2 = 4.13 m/s Ans. (b)  
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P3.17 Water flows steadily through the round pipe in the figure. The entrance velocity is Vo. The 
exit velocity approximates turbulent flow,    u = umax(1 − r/R)1/7. Determine the ratio Uo/umax for 
this incompressible flow. 

Solution: Inlet and outlet flow must balance: 

 

Q1 =Q2, or: Uo
0

R

∫ 2πr dr = umax
0

R

∫ 1− r
R








1/7

2πr dr, or: UoπR
2 = umax

49π
60

R2  

Cancel and rearrange for this assumed incompressible pipe flow: 

Uo

umax
=
49
60

Ans.  

 

P3.18 An incompressible fluid flows past an 
impermeable flat plate, as in Fig. P3.18, with 
a uniform inlet profile u = Uo and a cubic 
polynomial exit profile 

u ≈Uo
3η −η3

2








 where η = y

δ
 

 
Fig. P3.18 

Compute the volume flow Q across the top surface of the control volume. 

 

Solution: For the given control volume and incompressible flow, we obtain 

0 =Qtop +Qright −Qleft =Q + Uo
3y
2δ

−
y3

2δ3











0

δ

∫  b dy − Uo
0

δ

∫ b dy  

=Q +
5
8

Uobδ −Uobδ, solve for Q =
3
8
Uobδ Ans.  

 

P3.19 Incompressible steady flow in the inlet 
between parallel plates in Fig. P3.19 is 
uniform, u = Uo = 8 cm/s, while downstream 
the flow develops into the parabolic laminar 
profile u = az(zo − z), where a is a constant. If 
zo = 4 cm and the fluid is SAE 30 oil at 20°C, 
what is the value of umax in cm/s? 

 
Fig. P3.19 
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Solution: Let b be the plate width into the paper. Let the control volume enclose the inlet and 
outlet. The walls are solid, so no flow through the wall. For incompressible flow, 

0 =Qout −Qin = az(zo − z)bdz −
0

zo

∫ Uobdz = abzo
3 /6 −Uobzo

0

zo

∫ = 0, or: a = 6Uo/zo
2  

Thus continuity forces the constant a to have a particular value. Meanwhile, a is also related 
to the maximum velocity, which occurs at the center of the parabolic profile: 

At z = zo/2: u = umax = a zo

2






 zo −

zo

2






 = azo

2/4 = (6Uo/zo
2 )(zo

2/4)  

or: umax =
3
2

Uo =
3
2

(8 cm/s) = 12 cm
s

Ans.  

Note that the result is independent of zo or of the particular fluid, which is SAE 30 oil. 
 

 
P3.20 An incompressible fluid flows steadily through the rectangular duct in the figure. The 
exit velocity profile is given by u ≈ umax(1 – y2/b2)(1 – z2/h2). (a) Does this profile satisfy the 
correct boundary conditions for viscous fluid flow? (b) Find an analytical expression for the 
volume flow Q at the exit. (c) If the inlet flow is 8.5 m3/min, estimate umax in m/s. 

 

Solution: (a) The fluid should not slip at any of the duct surfaces, which are defined by y = 
±b and z = ±h. From our formula, we see u ≡  0 at all duct surfaces, OK. Ans. (a) 
(b) The exit volume flow Q is defined by the integral of u over the exit plane area: 

Q = udA = umax 1− y
2

b2









 1− z

2

h2











−b

+b

∫  dy dz = umax
4b
3









4h
3









−h

+h

∫∫∫  

=
16bhumax

9
Ans. (b)  

(c) Given Q = 8.5 m3/min = 0.1417 m3/s and b = h = 10 cm, the maximum exit velocity is 

Q = 0.1416 m3

s
=

16
9

(0.1 m)(0.1 m)umax, solve for umax = 7.97 m / s Ans. (c)  
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P3.21 Water from a storm drain flows over an outfall onto a porous bed which absorbs the 
water at a uniform vertical velocity of 8 mm/s, as shown in Fig. P3.21. The system is 5 m deep 
into the paper. Find the length L of bed which will completely absorb the storm water. 

 

Fig. P3.21 

Solution: For the bed to completely absorb the water, the flow rate over the outfall must 
equal that into the porous bed, 

 

 

P3.22 Oil (SG-0.91) enters the thrust bearing at 250 N/hr and exits radially through the 
narrow clearance between thrust plates. Compute (a) the outlet volume flow in mL/s, and 
(b) the average outlet velocity in cm/s. 

Solution: The specific weight of the oil is (0.91)(9790) = 8909 N/m3. Then 

 

Fig. P3.22 

Q2 =Q1 =
250/3600 N/s
8909 N/m3 = 7.8 ×10−6  m3

s
= 7.8 mL

s
Ans. (a)  

But also Q2 =V2 π(0.1 m)(0.002 m) = 7.8 ×10−6, solve for V2 = 1.24 cm
s

Ans. (b)  
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P3.23 For the two-port tank in Fig. E3.5, let the dimensions remain the same, but assume V2 
= 1 m/s and that V1 is unknown.   If the water surface is rising at a rate of 2.5 cm/s, (a) 
determine the average velocity at section 1.  (b) Is the flow at section 1 in or out? 

Solution:  Simply modify the calculations of Ex. 3.5 to match the new data.  Assuming the 
water density is constant, the mass balance reduces to a set of volume flows: 

   

A1V1+ A2 V2 = At
dh
dt

, or : π
4

(2.5×10−2  m)2V1 +
π
4

(7.5×10−2  m)2(1 m/s)

= (0.186 m2)(2.5×10−2 m/s)

(4.91×10−4m2)V1 + (4.42×10−3 m3/s) = (4.65×10−3 m3/s)

Solve for V1 = 0.47 m/s ( flow in) Ans.

 

 

P3.24 The converging-diverging nozzle shown in Fig. P3.24 expands and accelerates dry air 
to supersonic speeds at the exit, where p2 = 8 kPa and T2 = 240 K. At the throat,  
p1 = 284 kPa, T1 = 665 K, and V1 = 517 m/s. For steady compressible flow of an ideal gas, 
estimate (a) the mass flow in kg/h, (b) the velocity V2, and (c) the Mach number Ma2. 

 
Fig. P3.24 

Solution: The mass flow is given by the throat conditions: 

  
m = ρ1A1V1 =

284000
(287)(665)

kg
m3










π
4

(0.01 m)2 517 m
s







 = 0.0604 kg

s
Ans. (a)  

For steady flow, this must equal the mass flow at the exit: 

 
0.0604 kg

s
= ρ2A2V2 =

8000
287(240)









π
4

(0.025)2V2, or V2 ≈ 1060 m
s

Ans. (b)  

Recall from Eq. (1.39) that the speed of sound of an ideal gas = (kRT)1/2. Then 

  
Mach number at exit: Ma = V2/a2 = 1060

[1.4(287)(240)]1/2 ≈ 3.41 Ans. (c)  
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P3.25 The hypodermic needle in the figure contains a liquid (SG = 1.05). If the serum is to 
be injected steadily at 6 cm3/s, how fast should the plunger be advanced (a) if leakage in the 
plunger clearance is neglected; and (b) if leakage is 10 percent of the needle flow? 

 

Solution: (a) For incompressible flow, the volume flow is the same at piston and exit: 

Q = 6 cm3

s
= A1V1 =

π
4

(2 cm)2V1, solve Vpiston = 1.91  cm
s

Ans. (a)  

(b) If there is 10% leakage, the piston must deliver both needle flow and leakage: 

A1V1 =Qneedle +Qclearance = 6 + 0.1(6) = 6.6 cm
3

s
=
π
4

(2)2V1,  

V1 = 2.1 cm
s

Ans. (b)  

 

P3.26 Water enters the bottom of the cone in the figure at a uniformly increasing average 
velocity V = Kt. If d is very small, derive an analytic formula for the water surface rise h(t), 
assuming h = 0 at t = 0. 

Solution: For a control volume around the cone, the mass relation becomes 

 

 

d
dt

ρ∫ dυ( ) − min = 0 =
d
dt

ρ
π
3
(h tanθ)2h




− ρ

π
4
d2Kt  

Integrate: ρ
π
3
h3 tan2θ = ρ π

8
d2Kt2  

Solve for h(t) = 3
8
Kt2d2 cot2θ





1/3

Ans.  
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P3.27 As will be discussed in Chaps. 7 and 8, the flow of a stream Uo past a blunt flat plate 
creates a broad low-velocity wake behind the plate. A simple model is given in  
Fig. P3.27, with only half of the flow shown due to symmetry. The velocity profile behind the 
plate is idealized as “dead air” (near-zero velocity) behind the plate, plus a higher velocity, 
decaying vertically above the wake according to the variation u ≈ Uo + ΔUe−z/L, where L is the plate 
height and z = 0 is the top of the wake. Find ΔU as a function of stream speed Uo. 

 
Fig. P3.27 

Solution: For a control volume enclosing the upper half of the plate and the section where 
the exponential profile applies, extending upward to a large distance H such that exp(–H/L) ≈ 
0, we must have inlet and outlet volume flows the same: 

Qin = Uo
−L/2

H

∫ dz =Qout = (Uo +ΔUe
−z/L

0

H

∫ )dz, or: Uo H +
L
2







 = UoH +ΔUL  

Cancel UoH and solve for ΔU ≈
1
2
Uo Ans.  

 

 
P3.28 A thin layer of liquid, draining from 
an inclined plane, as in the figure, will have a 
laminar velocity profile u = Uo(2y/h − y2/h2), 
where Uo is the surface velocity. If the plane 
has width b into the paper, (a) deter-mine the 
volume rate of flow of the film. (b) 
Suppose that h = 1.25 cm and the flow rate 
per foot of channel width is 5 L/min. Estimate 
Uo in m/s. 

 

Solution: (a) The total volume flow is computed by integration over the flow area: 

Q = Vn dA = Uo
0

h

∫ 2y
h
−
y2

h2









bdy =

2
3
Uobh Ans. (a)∫  

(b) Evaluate the above expression for the given data: 

Q = 5 L
min

= 8.33×10−5  m3

s
=

2
3
Uobh =

2
3
Uo(0.3 m)(1.25 ×10−2 m),  

solve for Uo = 0.033 m / s Ans. (b)  

 

Fig. P3.28 
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P3.29 Consider a highly pressurized air tank at conditions (po, ρo, To) and volume υo.  In 
Chap. 9 we will learn that, if the tank is allowed to exhaust to the atmosphere through a well-
designed converging nozzle of exit area A, the outgoing mass flow rate will be 

 

m =
α po A
RTo

, where α ≈ 0.685 for air  

This rate persists as long as  po  is at least twice as large as the atmospheric pressure.   Assuming 
constant To  and an ideal gas, (a) derive a formula for the change of density ρo(t) within the tank.  
(b)  Analyze the time Δt required for the density to decrease by 25%. 
 
Solution:  First convert the formula to reflect tank density instead of pressure: 

 

m =
α po A
RTo

=
α (ρoRTo )A

RTo
= αρo A RTo  

(a)  Now apply a mass balance to a control volume surrounding the tank:   

 

dm
dt
|system = 0 =

d
dt
(ρoυo ) + mout = υo

dρo
dt

+ αρoA RTo

Separate variables : dρo
ρo

= − αA RTo dt

Integrate from state1 to state2 : ρo2
ρo1

= exp[ −αA RTo
υo

(t2 −t1)] Ans.(a)

 

(b)   If  the density drops by 25%, then we compute 

αA RTo
υo

(t2 −t1) = − ln(0.75) = 0.288 ; Thus Δt = 0.288υo
αA RTo

Ans.(b)  

 

P3.30    Air, assumed to be a perfect gas from Table A.4, flows through a long, 2-cm-diameter 
insulated tube.   At section 1, the pressure is 1.1 MPa and the temperature is 345 K.  At section 2, 
67 meters further downstream, the density is 1.34 kg/m3, the temperature 298 K, and the Mach 
number is 0.90.  For one-dimensional flow, calculate (a) the mass flow; (b) p2; (c) V2; and (d) the 
change in entropy between 1 and 2.  (e) How do you explain the entropy change? 

Solution:   For air, k = 1.40 and R = 287 m2/s2-K, hence cp = kR/(k-1) = 1005 m2/s2-K.  (a, c) 
We have enough information at section 2 to calculate the velocity, hence the mass flow: 

    

a2 = kRT2 = 1.4(287)(298K ) = 346 m
s

, thus V2 = Ma2 a2 = (0.9)(346) = 311 m
s

Ans.(c)

Then m = ρ2 A2 V2 = (1.34 kg
m3

)[π
4

(0.02m)2](311m
s

) = 0.131 kg
s

Ans.(a)
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(b)  The pressure at section 2 follows from the perfect gas law: 
 

         
   
p2 = ρ2 RT2 = (1.34 kg

m3
)(287 N −m

kg K
)(298 K ) =115,000 N

m2
= 115, 000 Pa Ans.(b)  

 
(d)  For a perfect gas with constant specific heats, the entropy change is 
 

                        

   

s2 −s1= cp ln(
T2
T1

) − R ln(
p2
p1

) = (1005) ln(298K
345K

) − (287) ln( 115kPa
1100kPa

)

= −147 −(−648) = +501 J
kg − K

Ans.(d)
 

(e)  The entropy has increased, yet there is no heat transfer (insulated pipe).  The answer is 
irreversibility.  Friction in the long pipe has caused viscous dissipation in the fluid. 
NOTE:  These numbers are not just made up.  They represent a typical case of compressible 
flow of air in a long pipe with friction, to be studied in Chapter 9. 

 

 
P3.31 In elementary compressible-flow theory (Chap. 9), compressed air will exhaust from a small 
hole in a tank at the mass flow rate  where ρ is the air density in the tank and C is a constant. 

If ρo is the initial density in a tank of volume v, derive a formula for the density change ρ(t) after the 
hole is opened. Apply your formula to the following case: a spherical tank of diameter 50 cm, with 
initial pressure 300 kPa and temperature 100°C, and a hole whose initial exhaust rate is 0.01 kg/s. 
Find the time required for the tank density to drop by 50 percent. 

 

Solution: For a control volume enclosing the tank and the exit jet, we obtain 

 

0 = d
dt

ρ dv∫( ) + mout, or: v dρ
dt

= − mout = −Cρ,  

or: dρ
ρρo

ρ

∫ = −
C
v

dt
0

t

∫ , or: ρ
ρo

≈ exp −
C
v
t





Ans. 

 
 
 



  17 

Now apply this formula to the given data. If po = 300 kPa and To = 100°C = 373°K, then ρo 
= p/RT = (300,000)/[287(373)] ≈ 2.80 kg/m3. This establishes the constant “C”: 

 

mo = Cρo = 0.01 kg
s
= C 2.80 kg

m3






, or C ≈ 0.00357 m3

s
 for this hole. 

The tank volume is  Then we require 

ρ/ρo = 0.5 = exp −
0.00357
0.00654

t





if t ≈ 1.3 s Ans.  

 

P3.32   A hollow conical container, standing point-down, is 1.2 m high and has a total 
included cone angle of 80°.  It is being filled with water from a hose at 200 L per minute.  
How long will it take to fill the cone? 
 
Solution:  The control volume, of course, surrounds 
the cone with one inlet, no exits.  We don’t need any 
complicated integral mass relations, for the flow 
rate is known, as is the cone volume.  The radius 
of the upper “base” of the cone is 
 

   R = h tan(40) = (1.2m)(0.839) = 1.007 m  
 
The volume of the cone is 
 

      
  
υ =

π
3

R2 h = π
3

(1.007m)2(1.2m) = 3.82m3= 3820 L  

 
Clearly, then, the time to fill the cone is (3820 L)/(200 L/min) = 19.1 minutes.     Ans. 

 

P3.33 A bellows may be modeled as a deforming wedge-shaped volume as in Fig. P3.33. 

The check valve on the left (pleated) end is closed during the stroke. If b is the  

bellows width into the paper, derive an expression for outlet mass flow as a function  

of stroke θ(t). 

 

 

 

 

 

h = 1.2 m 
R 

80° 

200 L/min 
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Solution: For a control volume enclosing the bellows and the outlet flow, we obtain 

 
Fig. P3.33 

 

d
dt
(ρυ)+ mout = 0, where υ = bhL = bL2 tanθ  

 

since L is constant, solve for mo = −
d
dt

(ρbL2 tanθ) = −ρbL2 sec2θ dθ
dt

Ans. 

 

P3.34 Water at 20°C flows through the piping junction in the figure, entering section 1 at  
75 L/min. The average velocity at section 2 is 2.5 m/s. A portion of the flow is diverted through 
the showerhead, which contains 100 holes of 1-mm diameter. Assuming uniform shower flow, 
estimate the exit velocity from the showerhead jets. 

 

Solution: A control volume around sections (1, 2, 3) yields 

Q1 =Q2 +Q3 =1.25 ×10−3  m3/s.  

Meanwhile, with V2 = 2.5 m/s known, we can calculate Q2 and then Q3: 

Q2 =V2A2 = (2.5 m) π
4

(0.02 m)2 = 0.000785 m3

s
,  

hence Q3 =Q1 −Q2 = 0.00125 − 0.000785 = 0.000465 m3

s
 

Each hole carries Q3/100 = 0.00000465 m3

s
=
π
4

(0.001)2Vjet ,

solve Vjet = 5.92 m
s

Ans.
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P3.35 In some wind tunnels the test section is perforated to suck out fluid and provide a thin 
viscous boundary layer. The test section wall in Fig. P3.35 contains 1200 holes of 5-mm 
diameter each per square meter of wall area. The suction velocity through each hole is Vr = 8 
m/s, and the test-section entrance velocity is V1 = 35 m/s. Assuming incompressible steady 
flow of air at 20°C, compute (a) Vo, (b) V2, and (c) Vf, in m/s. 

 

Fig. P3.35 

Solution: The test section wall area is (π)(0.8 m)(4 m) = 10.053 m2, hence the total number 
of holes is (1200)(10.053) = 12064 holes. The total suction flow leaving is 
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P3.36 A rocket motor is operating steadily, as shown in Fig. P3.36. The products of 
combustion flowing out the exhaust nozzle approximate a perfect gas with a molecular 
weight of 28. For the given conditions calculate V2 in m/s. 

Solution: Exit gas: Molecular weight = 28, thus Rgas = 297 m2/(s2⋅K). Then, 

 
Fig. P3.36 

ρexit gas =
p

RT
=

103 kPa
(297)(866.33)

≈ 0.4 kg/m3  

For mass conservation, the exit mass flow must equal fuel + oxygen entering = 8.5 kg/s: 

 

mexit = 8.5 kg/s = ρeAeVe = (0.4) π
4

(14 ×10−2 )2Ve, solve for Ve ≈ 1380.4  m / s Ans.  

 

P3.37 In contrast to the liquid rocket in Fig. P3.36, the solid-propellant rocket in Fig. P3.37 
is self-contained and has no entrance ducts. Using a control-volume analysis for the 
conditions shown in Fig. P3.37, compute the rate of mass loss of the propellant, assuming 
that the exit gas has a molecular weight of 28. 

 

Fig. P3.37 

Solution: With M = 28, R = 8313/28 =297 m2/(s2⋅K), hence the exit gas density is 

 

For a control volume enclosing the rocket engine and the outlet flow, we obtain 

 

 

or: d
dt

(mpropellant) = − mexit = −ρeAeVe = −(0.404)(π/4)(0.18)2(1150) ≈ −11.8 kg
s

Ans.  
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P3.38 The jet pump in Fig. P3.38 injects water at U1 = 40 m/s through a 7.5-cm pipe and 
entrains a secondary flow of water U2 = 3 m/s in the annular region around the small pipe. The 
two flows become fully mixed down-stream, where U3 is approximately constant. For steady 
incompressible flow, compute U3 in m/s. 

Solution: First modify the units: D1 = 0.075 m, D2 = 0.25 m. For incompressible flow, the 
volume flows at inlet and exit must match: 

 

Q1 +Q2 =Q3, or: π
4
(0.075)2(40)
0.1767

  
+
π
4
[(0.25)2 − (0.075)2

0.134
  

](3) = π
4
(0.25)2U3  

Solve for U3 ≈ 6.33 m / s  (OK)     Ans.  

 

P3.39    If the rectangular tank full of water 

in Fig. P3.39 has its right-hand wall 

lowered by an amount δ, as shown, water 

will flow out as it would over a weir or 

dam.  In Prob. P1.16 we deduced that the 

outflow Q would be given by 
 

                          Q = C bg1/2δ 3/2  

where b is the tank width into the paper, g is the acceleration of gravity, and C is a 
dimensionless constant.  Assume that the water surface is horizontal, not slightly curved as in 
the figure.  Let the initial excess water level be δo.  Derive a formula for the time required to 
reduce the excess water level to (a) δo/10; and (b) to zero. 
 
Solution:   The control volume encloses the tank and cuts through the outlet flow.  From Eq. 
(3.20), 

  

d
dt

( ρ dυ) + ρQout∫ =
d
dt

[ρLb(h+δ)] + ρCb g1/2δ3/2 , cancel ρ and b;

L dδ
dt

= −C g1/2δ3/2 . Separate variables : dδ
δ3/2δo

δ
∫ = −

C g1/2

L0
t
∫ dt

 

where δ  is the instantaneous excess water level.  The integrated result for water level δ(t) is 

 

Fig. P3.39 
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The two specific results requested are: 
 

   
(a) δ =

δo
10

: t = 4.32L
C g1/2δo

1/2
Ans.(a) ; (b) δ = 0 : t = ∞ Ans.(b)  

 
It doesn’t really take infinitely long to reach the final level, because surface tension comes 
into play, at the lip of the dam, as δ  becomes very small.  

 

P3.40 An incompressible fluid is squeezed between two disks by downward motion Vo of 
the upper disk. Assuming 1-dimensional radial outflow, find the velocity V(r). 

Solution: Let the CV enclose the disks and have an upper surface moving down at speed 
Vo. There is no inflow. Thus 

 

Fig. P3.40 

d
dt

ρ dυ
CV
∫









+ ρVout dA = 0 = d

dt
(ρπr2h)+ ρ 2πrh V,

CS
∫  

or: r2 dh
dt
+ 2rhV = 0, but dh

dt
= −Vo(the disk velocity)  

As the disk spacing drops, h(t) ≈ ho − Vot, the outlet velocity is V = Vo r/(2h). Ans.  

 

P3.41 The average rainfall for 3 hours in a 15-km2 area is 25 mm/h. The average soil 
absorption is about 2.5 mm/h. Is there any water left after 24 hours? If there is some water 
left, how deep is it? 

Solution: This problem is a simple conservation of mass with steady flow process. 
Therefore, the rainfall causes water to rise after three hours of raining by 3(25 – 2.5) =  
67.5 mm. Within 24 hours, the soil can absorb water up to 24(2.5) = 60.0 mm. There is  
7.5 mm depth of water left. 
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P3.42 A simple bio-gas well in Fig. 
P3.42 operates in batches. Bio-mass in the 
well produces bio-gas to fill the cover, 
which is a cylinder with one end closed. 
Before the gas is released to customers, the 
cover’s end must be at hmax from the bio-
mass surface. Then a batch ends when the 
cover’s end reaches hmin. With the given 
information, how long does it take for each 
batch of bio-gas to be produced? 

 

 
Solution: consider control volume as 
follows:  

 

From conservation of mass  

 

∂
∂t

ρ dV +
CV∫ ρ


V ⋅ d

A

CS∫ = 0                    (1)  

Assume that the friction between bio-mass and the cover is low and gas temperature is 
constant. Normally the cover moves up and down slow enough so the pressure is maintained 
by weight of the cover. Then (1) becomes 

 

ρ
∂
∂t

[πD2 ⋅ h]+ mout − min = 0

πρD2 ∂h
∂t

= min − mout

 dh = 1
πρD2hmax

hmin∫ ( min − mout0

t
∫ )dt

∴          t = πρD
2 (hmin − hmax )

( min − mout )

 

 

P3.43 A cone-shaped tank was filled 
with liquid as shown in Fig. P3.43. The 
tank’s apex was cut open allowing the 
liquid to drain. The tank’s base was 
punched to keep pressure inside the tank 
equal to atmospheric pressure. Assume 
that draining speed is a function of depth 
of the liquid measured from the free 
surface to the hole, that is, V = 2gh . At 
the beginning, the liquid’s depth was ho. 

Determine the time to drain the liquid in 
terms of initial volume, V0, and flow rate, 
Q0, 
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Solution: Consider conservation of mass equation 

 

∂
∂t

ρ dV + ρ

V ⋅

CS∫CV∫  d

A = 0  

Given control volume 

 

In the control volume, there are both liquid and air. Therefore, we can write the equation 
above as 

∂
∂t

ρliq dVliq +
∂
∂t

ρair dVair −CVair
∫CVliq

∫  ρairV1A1 + ρliqVA = 0  

 

Since ρliq  ρair ,  then effect of any changes from air would be negligible, so that
∂
∂t

ρliq dVliq +  
CVliq
∫ ρliqVA = 0

∂
∂t

(ρliqVliq )+ ρliqVA = 0

 

Find Vliq = dV = πr2 dh
0

h
∫ =

CVliq
∫  πh2 tan2 θ

2







0

h
∫  dh = 1

3
π tan2 θ

2





h3

Substitute V = 2gh  into equation above, we have
 

∂
∂t

1
3
ρliqπ tan2 θ

2( )h3





  +ρliq 2gh  A = 0

ρliq  π tan2 θ
2





h2 dh

dt
 + ρliq 2gh  A = 0

∴    h3/2dh = − 2g  A

π tan2 θ
2






dt

 

Integrate from h = h0 at t = 0 to h = 0 at t = t. 

, 

h3/2
h0

0
∫ dh = − 2g  A

π tan2 θ
2






t

∴     t = 2
5

π tan2 θ
2





h0

5/2

2g  A

       t = 6
5
V0

Q0

      ,       
V0 =

1
3
π tan2 θ

2





h0

3

θ0 = 2gh0  A                  Ans.
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P3.44 A wedge splits a sheet of 20°C water, as shown in Fig. P3.44.  Both wedge and sheet 
are very long into the paper.  If the force required to hold the wedge stationary is F = 124 N 
per meter of depth into the paper, what is the angle θ of the wedge? 

 

 

 

 

 

Solution:   For water take ρ = 998 kg/m3.  First compute the mass flow per unit depth:  

 
m / b = ρVh = (998 kg / m3)(6m / s)(0.04m) = 239.5 kg / s −m  

The mass flow (and velocity) are the same entering and leaving.  Let the control volume 
surround the wedge.  Then the x-momentum integral relation becomes 

    

ΣFx = −F = m(uout − uin ) = m(V cosθ
2
−V ) = mV (cosθ

2
−1)

or : −124 N / m = (239.5kg / s −m)(6m / s)(cosθ
2
−1)

Solve cosθ
2
= 0.9137 , θ

2
=24o , θ = 48o Ans.

 

 

P3.45 The water jet in Fig. P3.45 strikes normal to a fixed plate. Neglect gravity and 
friction, and compute the force F in newtons required to hold the plate fixed. 

Solution: For a CV enclosing the plate and the impinging jet, we obtain: 

 
Fig. P3.45 

 

∑Fx = −F = mupuup + mdownudown − mju j
= − mju j, mj = ρAjVj

 

Thus F = ρAjVj
2 = (998)π(0.05)2(8)2 ≈ 500 N ← Ans.  

 

F 
6 m/s 

4 cm 

6 m/s 
 

6 m/s 
 

Fig. P3.44 

θ 
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P3.46 In Fig. P3.46 the vane turns the water jet completely around. Find the maximum jet 
velocity Vo for a force Fo. 

Solution: For a CV enclosing the vane and the inlet and outlet jets, 

 

Fig. P3.46 

 
∑Fx = −Fo = moutuout − minuin = mjet (−Vo)− mjet (+Vo)  

or: Fo = 2ρoAoVo
2, solve for Vo =

Fo
2ρo (π /4)Do

2 Ans.  

 

P3.47 A liquid of density ρ flows through the sudden contraction in Fig. P3.47 and exits to 
the atmosphere. Assume uniform conditions (p1, V1, D1) at section 1 and (p2, V2, D2) at 
section 2. Find an expression for the force F exerted by the fluid on the contraction.

 

Fig. P3.47 

Solution: Since the flow exits directly to the atmosphere, the exit pressure equals atmospheric: 
p2 = pa. Let the CV enclose sections 1 and 2, as shown. Use our trick (page 129 of the text) of 
subtracting pa everywhere, so that the only non-zero pressure on the CS is at section 1, p = p1 – 
pa. Then write the linear momentum relation with x to the right: 

 
∑Fx = F − (p1 − pa )A1 = m2u2 − m1u1, where m2 = m1 = ρ1A1V1  

But u2 = −V2 and u1 = −V1. Solve for Fon fluid = (p1 − pa )A1 + ρ1A1V1(−V2 +V1)  

Meanwhile, from continuity, we can relate the two velocities: 

Q1 =Q2, or (π/4)D1
2V1 = (π/4)D2

2V2, or: V2 =V1(D1
2/D2

2 )  

Finally, the force of the fluid on the wall is equal and opposite to F on fluid, to the left: 

Ffluid on wall = (p1 − pa )A1 − ρ1A1V1
2 D1

2 D2
2( ) −1



, A1 =

π
4

D1
2 Ans.  

The pressure term is larger than the momentum term, thus F > 0 and acts to the left. 
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P3.48 Water at 20°C flows through a 5-cm-diameter pipe which has a 180° vertical bend, 
as in Fig. P3.48. The total length of pipe between flanges 1 and 2 is 75 cm. When the weight 
flow rate is 230 N/s, p1 = 165 kPa, and p2 = 134 kPa. Neglecting pipe weight, determine the 
total force which the flanges must withstand for this flow. 
 

 
Fig. P3.48 

Solution: Let the CV cut through the flanges and surround the pipe bend. The mass flow rate is 
(230 N/s)/(9.81 m/s2) = 23.45 kg/s. The volume flow rate is Q = 230/9790 = 0.0235 m3/s. Then 
the pipe inlet and exit velocities are the same magnitude: 

V1 =V2 =V =Q/A =
0.0235 m3/s

(π/4)(0.05 m)2 ≈ 12.0 m
s

 

Subtract pa everywhere, so only p1 and p2 are non-zero. The horizontal force balance is: 

 

∑Fx = Fx,flange + (p1 − pa )A1 + (p2 − pa )A2 = m2u2 − m1u1

= Fx,fl + (64000) π
4

(0.05)2 + (33000) π
4

(0.05)2 = (23.45)(−12.0 −12.0 m/s)
 

or: Fx,flange = −126 − 65 − 561 ≈ −750 N Ans. 

The total x-directed force on the flanges acts to the left. The vertical force balance is 

∑Fy = Fy,flange =Wpipe +Wfluid = 0 + (9790)
π
4
(0.05)2(0.75) ≈ 14 N Ans. 

Clearly the fluid weight is pretty small. The largest force is due to the 180° turn. 
 

P3.49 Consider uniform flow past a cylinder with a V-shaped wake, as shown. Pressures at 
(1) and (2) are equal. Let b be the width into the paper. Find a formula for the force F on the 
cylinder due to the flow. Also compute CD = F/(ρU2Lb). 

 
Fig. P3.49 
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Solution: The proper CV is the entrance (1) and exit (2) plus streamlines above and 
below which hit the top and bottom of the wake, as shown. Then steady-flow continuity 
yields, 

0 = ρu dA
2
∫ − ρu dA

1
∫ = 2 ρ

U
2

1+ y
L









0

L

∫ b dy − 2ρUbH,  

where 2H is the inlet height. Solve for H = 3L/4. 
Now the linear momentum relation is used. Note that the drag force F is to the right 

(force of the fluid on the body) thus the force F of the body on fluid is to the left.  
We obtain, 

∑Fx = 0 = uρu dA − uρu dA = 2 U
20

L

∫ 1+ y
L









1
∫ ρ

U
22

∫ 1+ y
L







bdy − 2HρU2b = −Fdrag  

Use H =
3L
4
, then Fdrag =

3
2
ρU2Lb − 7

6
ρU2Lb ≈ 1

3
ρU2Lb Ans.  

The dimensionless force, or drag coefficient F/(ρU2Lb), equals CD = 1/3. Ans. 
 

P3.50 A 12-cm-diameter pipe, containing 

water flowing at 200 N/s, is capped by an 

orifice plate, as in Fig. P3.50.  The exit jet is 

25 mm in diameter.  The pressure in the pipe 

at section 1 is 800 kPa-gage.   Calculate the 

force  F  required to hold the orifice plate. 

Solution:  For water take ρ = 998 kg/m3.  This is a straightforward x-momentum problem.  
First evaluate the mass flow and the two velocities: 

 

m =
w
g
=
200N / s
9.81m / s2

= 20.4 kg
s
; V1 =

m
ρA1

=
20.4 kg / s

(998kg / m3)(π / 4)(0.12m)2
= 1.81m

s

V2 =
m

ρA2
=

20.4 kg / s
(998kg / m3)(π / 4)(0.025m)2

= 41.6 m
s

 

Now apply the x-momentum relation for a control volume surrounding the plate: 

 

ΣFx = −F + p1,gageA1 = m(V2 −V1) , or :

F = (800000Pa)π
4
(0.12m)2 − (20.4 kg

s
)(41.6−1.81m

s
) = 9048 − 812 = 8240N Ans.

 

 

1 

V2 
200 N/s 

F ? 

Fig. P3.50 

d = 25 mm 
CV 
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P3.51 When a jet strikes an inclined plate, it breaks into two jets of equal velocity V  
but unequal fluxes αQ at (2) and (1 – α)Q at (3), as shown. Find α, assuming that the 
tangential force on the plate is zero. Why doesn’t the result depend upon the properties  
of the jet flow? 

 

Fig. P3.51 

Solution: Let the CV enclose all three jets and the surface of the plate. Analyze the force 
and momentum balance tangential to the plate: 

 

∑Ft = Ft = 0 = m2V+ m3(−V)− m1Vcosθ
=α mV− (1−α) mV− mVcosθ = 0, solve for α =

1
2
(1+ cosθ ) Ans.  

The jet mass flow cancels out. Jet (3) has a fractional flow (1 − α) = (1/2)(1 − cosθ). 
 

P3.52 A liquid jet Vj of diameter Dj strikes a fixed cone and deflects back as a conical sheet at 
the same velocity. Find the cone angle θ  for which the restraining force F = (3/2)ρAjVj2. 

 

Fig. P3.52 

Solution: Let the CV enclose the cone, the jet, and the sheet. Then, 

 
∑Fx = −F = moutuout − minuin = m(−Vj cosθ)− mVj, where m = ρAjVj  

Solve for F = ρAjVj
2 (1+ cosθ) = 3

2
ρAjVj

2 if cosθ = 1
2

or θ = 60° Ans.  
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P3.53 The small boat is driven at steady speed Vo by compressed air issuing from a 3-
cm-diameter hole at Ve = 343 m/s and pe = 1 atm, Te = 30°C. Neglect air drag. The hull drag 
is kVo2, where k = 19 N ⋅ s2/m2. Estimate the boat speed Vo. 

 
Fig. P3.53 

Solution: For a CV enclosing the boat and moving to the right at boat speed Vo, the air 
appears to leave the left side at speed (Vo + Ve). The air density is pe/RTe ≈ 1.165 
kg/m3. The only mass flow across the CS is the air moving to the left. The force balance 
is 

 

 

 
 

P3.54    The horizontal nozzle in Fig. P3.54 has D1 = 30 cm, D2 = 15 cm, with p1 = 262 kPa 
(absolute) and V2 = 17 m/s. For water at 20°C, find the force provided by the flange bolts to 
hold the nozzle fixed. 

Solution: For an open jet, p2 = pa = 103.42 kPa(abs). Subtract pa everywhere so the only 
nonzero pressure is p1 = 262 − 103.42 = 158.58 kPa (gage).   
 

 
Fig. P3.54 

The mass balance yields the inlet velocity: 

V1
π
4

(0.3)2 = (17) π
4

(0.15)2, V1 = 4.25 m/s
 

The density of water is 999.8 kg/m3. Then 
the horizontal force balance is 

 

 

 

∑Fx = −Fbolts + (158.58 kPa) π
4

(0.3)2 = m2u2 − m1u1 = m(V2 −V1)  

Compute Fbolts =11209.36 − (999.8) π
4

(0.3)2 4.25 m/s( ) 17 − 4.25 m/s( ) ≈ 7379.84 N Ans.  
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P3.55 The jet engine in Fig. P3.55 admits 
air at 20°C and 1 atm at (1), where A1 = 0.5 
m2 and V1 = 250 m/s. The fuel-air ratio is 

1:30. The air leaves section (2) at 1 atm, V2 
= 900 m/s, and A2 = 0.4 m2. Compute the test 

stand support reaction Rx needed. 

Solution: ρ1 = p/RT = 101350/[287(293)] = 
1.205 kg/m3. For a CV enclosing the engine, 

 
Fig. P3.55 

 

m1 = ρ1A1V1 = (1.205)(0.5)(250) =151 kg/s, m2 =151 1+ 1
30







 =156 kg/s  

 
∑Fx = Rx = m2u2 − m1u1 − mfuelufuel =156(900)−151(250)− 0 ≈ 102,000 N Ans. 

 

P3.56 A liquid jet of velocity Vj and area Aj strikes a single 180° bucket on a turbine wheel 
rotating at angular velocity Ω. Find an expression for the power P delivered. At what Ω is the 
power a maximum? How does the analysis differ if there are many buckets, so the jet 
continually strikes at least one? 

 
Fig. P3.56 

Solution: Let the CV enclose the bucket and jet and let it move to the right at bucket 
velocity V = ΩR, so that the jet enters the CV at relative speed (Vj − ΩR). Then, 

 

∑Fx = −Fbucket = muout − muin
= m[−(Vj −ΩR)]− m[Vj −ΩR]

 

 
 

 
or: Fbucket = 2 m(Vj −ΩR) = 2ρAj(Vj −ΩR)

2,  

and the power is P =ΩRFbucket = 2ρAjΩR(Vj −ΩR)
2 Ans.  
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Maximum power is found by differentiating this expression: 

dP
dΩ

= 0 if ΩR =
Vj
3

Ans. whence Pmax =
8
27

ρAjVj
3






  

If there were many buckets, then the full jet mass flow would be available for work: 

 

mavailable = ρAjVj, P = 2ρAjVjΩR(Vj −ΩR), Pmax =
1
2
ρAjVj

3 at ΩR =
Vj
2

Ans.  

 

P3.57 The vertical gate in a water channel is partially open, as in Fig. P3.57. Assuming 
no change in water level and a hydrostatic pressure distribution, derive an expression for 
the streamwise force Fx on one-half of the gate as a function of (ρ, h, w, θ, V1). Apply your 
result to the case of water at 20°C, V1 = 0.8 m/s, h = 2 m, w = 1.5 m, and θ = 50°. 

 

Solution: Let the CV enclose sections (1) and (2), the centerline, and the inside of the gate, 
as shown. The volume flows are 

V1Wh =V2Bh, or: V2 =V1
W
B
=V1

1
1− sinθ

 

 

 
since B = W − W sinθ. The problem is unrealistically idealized by letting the water depth 
remain constant, whereas actually the depth would decrease at section 2. Thus we have no net 
hydrostatic pressure force on the CV in this model! The force balance reduces to 

 
∑Fx = Fgate on fluid = mV2 − mV1, where m = ρWhV1 and V2 =V1/ (1− sinθ)  

Solve for Ffluid on gate = −ρWhV1
2 1
(1− sinθ )

−1








 (to the left) Ans.  

This is unrealistic—the pressure force would turn this gate force around to the right. For the 
particular data given, W = 1.5 m, θ = 50°, B = W(1 − sinθ ) = 0.351 m, V1 = 0.8 m/s, thus 
V2 = V1/(1 − sin 50°) = 3.42 m/s, ρ = 998 kg/m3, h = 2 m. Thus compute 

Ffluid on gate = (998)(2)(1.5)(0.8)2 1
1− sin50°

−1




≈ 6300 N ← Ans. 
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P3.58 Consider incompressible flow in the 
entrance of a circular tube, as in Fig. P3.58. 
The inlet flow is uniform, u1 = Uo. The flow 
at section 2 is developed pipe flow. Find the 
wall drag force F as a function of (p1, p2, ρ, 
Uo, R) if the flow at section 2 is 

(a) Laminar: u2 = umax 1−
r2

R2








  

(b) Turbulent: u2 ≈ umax 1−
r
R








1/7

 

 
Fig. P3.58 

Solution: The CV encloses the inlet and outlet and is just inside the walls of the tube. We 
don’t need to establish a relation between umax and Uo by integration, because the results for 
these two profiles are given in the text. Note that Uo = uav at section (2). Now use these 
results as needed for the balance of forces: 

∑Fx = (p1 − p2 )πR
2 − Fdrag = u2(ρu2 2πr dr)−Uo(ρπR

2Uo ) = ρπR
2Uo

2

0

R

∫ (β2 −1)  

We simply insert the appropriate momentum-flux factors β from p. 136 of the text: 
(a) Laminar: Fdrag = (p1 − p2 )πR

2 − (1/3)ρπR2Uo
2 Ans. (a)  

(b) Turbulent, β2 ≈ 1.020: Fdrag = (p1 − p2 )πR
2 − 0.02ρπR2Uo

2 Ans. (b)  
 

P3.59 For the pipe-flow reducing section of 
Fig. P3.59, D1 = 8 cm, D2 = 5 cm, and p2 = 1 
atm. All fluids are at 20°C. If V1 = 5 m/s and 
the manometer reading is h = 58 cm, estimate 
the total horizontal force resisted by the 
flange bolts. 

 
Fig. P3.59 

Solution: Let the CV cut through the bolts and through section 2. For the given manometer 
reading, we may compute the upstream pressure: 

p1 − p2 = (γmerc −γwater )h = (132800 − 9790)(0.58 m) ≈ 71300 Pa (gage)  

Now apply conservation of mass to determine the exit velocity: 
Q1 =Q2, or (5 m/s)(π/4)(0.08 m)2 =V2(π/4)(0.05)2, solve for V2 ≈ 12.8 m/s  

Finally, write the balance of horizontal forces: 

 
∑Fx = −Fbolts + p1,gageA1 = m(V2 −V1),  

or: Fbolts = (71300)
π
4
(0.08)2 − (998) π

4
(0.08)2(5.0)[12.8 − 5.0] ≈ 163 N Ans.  
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P3.60 In Fig. P3.60 the jet strikes a vane which moves to the right at constant velocity Vc on a 
frictionless cart. Compute (a) the force Fx required to restrain the cart and (b) the power P delivered 
to the cart. Also find the cart velocity for which (c) the force Fx is a maximum and (d) the power P 
is a maximum. 

 

 Fig. P3.60 

Solution: Let the CV surround the vane and cart and move to the right at cart speed. The jet 
strikes the vane at relative speed Vj − Vc. The cart does not accelerate, so the horizontal force 
balance is 

∑Fx = −Fx = [ρAj(Vj −Vc)](Vj −Vc)cosθ − ρAj(Vj −Vc)
2  

or: Fx = ρAj(Vj −Vc)
2(1− cosθ ) Ans. (a)  

The power delivered is P =VcFx = ρAjVc(Vj −Vc)
2(1− cosθ ) Ans. (b)  

The maximum force occurs when the cart is fixed, or: Vc = 0 Ans. (c)  

The maximum power occurs when dP/dVc = 0, or: Vc = Vj/3 Ans. (d)  
 

P3.61 Water at 20°C flows steadily through the box in Fig. P3.61, entering station (1) at 2 

m/s. Calculate the (a) horizontal; and (b) vertical forces required to hold the box stationary 
against the flow momentum. 

Solution: (a) Summing horizontal forces, 

 
Fig. P3.61 

 

Rx = (998) π
4






(0.032)(5.56)







(− 5.56)− (998) π

4






(0.052)(2)







(− 2)(cos65°)

= −18.46 N Ans.
 

Rx = 18.5 N to the left  

 

∑Fy = Ry = − minuin = −(998) π
4






(0.052 )(2)(−2 sin65°) = 7.1 N up  
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P3.62 Water flows through the duct in Fig. P3.62, which is 50 cm wide and 1 m deep into 
the paper. Gate BC completely closes the duct when β = 90°. Assuming one-dimensional flow, 
for what angle β will the force of the exit jet on the plate be 3 kN? 

Solution: The steady flow equation applied to the duct, Q1 = Q2, gives the jet velocity as V2 
= V1(1 – sinβ). Then for a force summation for a control volume around the jet’s 
impingement area, 

 
 Fig. P3.62 

 

∑Fx = F = mjVj = ρ(h1 − h1 sinβ)(D)
1

1− sinβ










2

(V1
2 )  

β = sin−1 1− ρh1DV1
2

F









= sin−1 1−

(998)(0.5)(1)(1.2)2

3000








= 49.5° Ans.  

 
 
P3.63 The water tank in Fig. P3.63 stands on a frictionless cart and feeds a jet of diameter 4 
cm and velocity 8 m/s, which is deflected 60° by a vane. Compute the tension in the 
supporting cable. 

Solution: The CV should surround the tank and wheels and cut through the cable and the 
exit water jet. Then the horizontal force balance is 

 

Fig. P3.63 

 

∑Fx = Tcable = moutuout = (ρAVj)Vj cosθ = 998
π
4






(0.04)2(8)2cos60° = 40 N Ans.  
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P3.64 A pipe flow expands from (1) to (2), causing eddies as shown. Using the given CV 
and assuming p = p1 on the corner annular ring, show that the downstream pressure is given 
by, neglecting wall friction, 

p2 = p1 + ρV1
2 A1
A2









 1−

A1
A2









  

 
Fig. P3.64 

Solution: From mass conservation, V1A1 = V2A2. The balance of x-forces gives 

 
∑Fx = p1A1 + pwall(A2 −A1)− p2A2 = m(V2 −V1), where m = ρA1V1, V2 =V1A1/A2  

If pwall = p1 as given, this reduces to p2 = p1 + ρ
A1
A2
V1
2 1− A1

A2









 Ans.  

 

P3.65 Water at 20°C flows through the 
elbow in Fig. P3.65 and exits to the atmo-
sphere. The pipe diameter is D1 = 10 cm, while 
D2 = 3 cm. At a weight flow rate of 150 N/s, 
the pressure p1 = 2.3 atm (gage). Neglecting 
the weight of water and elbow,  
estimate the force on the flange bolts at 
section 1. 

 
Fig. P3.65

 
Solution: First, from the weight flow, compute Q = (150 N/s)/(9790 N/m3) = 0.0153 m3/s. 
Then the velocities at (1) and (2) follow from the known areas: 

V1 =
Q
A1

=
0.0153

(π/4)(0.1)2 =1.95 m
s

; V2 =
Q
A2

=
0.0153

(π/4)(0.03)2 = 21.7 m
s

 

The mass flow is ρA1V1 = (998)(π /4)(0.1)2(1.95) ≈ 15.25 kg/s. Then the balance of forces in 
the x-direction is: 

 

∑Fx = −Fbolts + p1A1 = mu2 − mu1 = m(−V2 cos 40°−V1)

solve for Fbolts = (2.3×101350) π
4

(0.1)2 +15.25(21.7cos 40°+1.95) ≈ 2100 N Ans.
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P3.66 A 20°C water jet strikes a vane on a tank with frictionless wheels, as shown. The jet 
turns and falls into the tank without spilling. If θ = 30°, estimate the horizontal force F 
needed to hold the tank stationary. 
Solution: The CV surrounds the tank and wheels and cuts through the jet, as shown. We 
should assume that the splashing into the tank does not increase the x-momentum of the 
water in the tank. Then we can write the CV horizontal force relation: 

 
Fig. P3.66 

 

∑Fx = −F = d
dt

uρ dυ∫( )tank
− minuin = 0 − mVjet  independent of θ  

Thus F = ρAjVj
2 = 998 kg

m3







π
4

(0.05)2 15 m
s









2

≈ 440.9 N Ans.  

 

P3.67 Water at 20°C exits to the standard sea-level atmosphere through the split nozzle in 
Fig. P3.67. Duct areas are A1 = 0.02 m2 and A2 = A3 = 0.008 m2. If p1 = 135 kPa (absolute) 
and the flow rate is Q2 = Q3 = 275 m3/h, compute the force on the flange bolts at section 1. 

 
Fig. P3.67 

Solution: With the known flow rates, we can compute the various velocities: 

V2 =V3 =
275/3600 m3/s

0.008 m2 = 9.55 m
s

; V1 =
550/3600

0.02
= 7.64 m

s
 

The CV encloses the split nozzle and cuts through the flange. The balance of forces is 

∑Fx = −Fbolts + p1,gageA1 = ρQ2(−V2 cos30°)+ ρQ3(−V3 cos30°)− ρQ1(+V1),  

or: Fbolts = 2(998)
275
3600






(9.55cos30°)+ 998

550
3600






(7.64)+ (135000 −101350)(0.02)  

=1261+1165 + 673 ≈ 3100 N Ans.  
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P3.68 A steady two-dimensional water 

jet, 4 cm thick with a weight flow rate of 

1960 N/s, strikes an angled barrier as in 

Fig. P3.68.  Pressure and water velocity are 

constant everywhere.  Thirty percent of the 

jet passes through the slot.  The rest splits 

symmetrically along the barrier.   

Calculate the horizontal force F needed, per unit  

thickness into the paper, to hold the barrier stationary. 

 

Solution:   For water take ρ = 998 kg/m.  The control volume (see figure) cuts through all four 

jets, which are numbered.  The velocity of all jets follows from the weight flow at (1): 

 

V1,2,3,4 = V1 =
w1

ρgA1
=

1960N / s
(9.81m / s2 )(998kg / m3)(0.04m)(1m)

= 5.0 m
s

m1 =
w1
g

=
1960N / s −m
9.81N / s2

= 200 kg
s −m

; m2 = 0.3 m1 = 60
kg
s −m

; m3 = m4 = 70
kg
s −m

 

Then the x-momentum relation for this control volume yields 

 

ΣFx = −F = m2u2 + m3u3 + m4u4 − m1u1 =
− F = (60)(5.0)+(70)(−5.0cos55 ) + (70)(−5.0cos55 ) − 200(5.0) , or :

F = 1000 + 201 + 201 − 300 ≈ 1100 N permeter of width Ans.
 

 

P3.69 The 6-cm-diameter 20°C water jet in 
Fig. P3.69 strikes a plate containing a hole of 
4-cm diameter. Part of the jet passes through 
the hole, and part is deflected. Determine the 
horizontal force required to hold the plate. 

Solution: First determine the incoming 
flow and the flow through the hole: 

 
Fig. P3.69 

Qin =
π
4

(0.06)2(25) = 0.0707 m3

s
, Qhole =

π
4

(0.04)2(25) = 0.0314 m2

s
 

Then, for a CV enclosing the plate and the two jets, the horizontal force balance is 

 

∑Fx = −Fplate = mholeuhole + mupperuupper + mlowerulower − minuin

= (998)(0.0314)(25)+ 0 + 0 − (998)(0.0707)(25)

= 784 −1764, solve for F ≈ 980 N (to left) Ans.

 

 

Fig. P3.68 

1960 N/s 

4 cm 

35° 

35° 
F 

30% 
(1) 

(2) 

(3) 

(4) 

CV 
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P3.70 The box in Fig. P3.70 has three 12.5-mm holes on the right side. The volume flows of 20°C 
water shown are steady, but the details of the interior are not known. Compute the force, if any, 
which this water flow causes on the box. 

Solution: First we need to compute the velocities through the various holes: 

 
Fig. P3.70 

Vtop =Vbottom =
2.8 ×10−3

(π/4)(0.0125)2 = 22.82 m/s; Vmiddle = 2Vtop = 45.64 m/s  

Pretty fast, but do-able, I guess. Then make a force balance for a CV enclosing the box: 

 
∑Fx = Fbox = − minuin + 2 mtoputop, where uin = −Vmiddle and utop =Vtop  

Solve for Fbox = (999.8)(5.6 ×10−3)(45.64)+ 2(999.8)(2.8 ×10−3)(22.82) ≈ 383.3 N Ans.  
 

 
P3.71 The tank in Fig. P3.71 weighs 500 N empty and contains 600 L of water at 20°C. 
Pipes 1 and 2 have D = 6 cm and Q = 300 m3/hr. What should the scale reading W be, in 
newtons? 

Solution: Let the CV surround the tank, cut through the two jets, and slip just under the tank 
bottom, as shown. The relevant jet velocities are 

 
Fig. P3.71 

V1 =V2 =
Q
A
=

(300/3600) m3/s
(π/4)(0.06 m)2 ≈ 29.5 m/s  

The scale reads force “P” on the tank bottom. Then the vertical force balance is 

 
∑Fz = P −Wtank −Wwater = m2v2 − m1v1 = m[0 − (−V1)]  

Solve for P = 500 + 9790(0.6 m3)+ 998 300
3600






(29.5) ≈ 8800 N Ans.  
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P3.72 Gravel is dumped from a hopper, at a rate of 650 N/s, onto a moving belt, as in Fig. 
P3.72. The gravel then passes off the end of the belt. The drive wheels are 80 cm in diameter 
and rotate clockwise at 150 r/min. Neglecting system friction and air drag, estimate the power 
required to drive this belt. 

 
Fig. P3.72 

Solution: The CV goes under the gravel on the belt and cuts through the inlet and outlet 
gravel streams, as shown. The no-slip belt velocity must be 

Vbelt =Voutlet =ΩRwheel = 150 rev
min

2π rad
rev

1
60

min
s






(0.4 m) ≈ 6.28 m

s
 

Then the belt applies tangential force F to the gravel, and the force balance is 

 
∑Fx = Fon belt = moutuout − minuin, but uin = 0.  

 

Then Fbelt = mVout =
650
9.81

 kg
s







 6.28 m

s






 = 416 N  

 
 

P3.73 The rocket in Fig. P3.73 has a supersonic exhaust, and the exit pressure pe is not 
necessarily equal to pa. Show that the force F required to hold this rocket on the test stand is 
F = ρeAeVe2 + Ae(pe − pa). Is this force F what we term the thrust of the rocket? 

 
Fig. P3.73 

Solution: The appropriate CV surrounds the entire rocket and cuts through the exit jet. 
Subtract pa everywhere so only exit pressure ≠ 0. The horizontal force balance is 

 
∑Fx = F − (pe − pa )Ae = meue − mfuf − mouo, but uf = uo = 0, me = ρeAeVe  

   
Thus F = ρeAeVe

2 + (pe - pa )Ae (yes, the  thrust) Ans.  
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P3.74 A uniform rectangular plate, 40 cm long and 30 cm deep into the paper, hangs in air from 
a hinge at its top, 30-cm side. It is struck in its center by a horizontal 3-cm-diameter jet of water 
moving at 8 m/s. If the gate has a mass of 16 kg, estimate the angle at which the plate will hang 
from the vertical. 

 
Fig. P3.74 

Solution: The plate orientation can be found through force and moment balances.  Find the 
force normal to the plate:  

   
∑Fn = Fn = mjetun = ρAVun = (998) π

4








(0.032 )(8)(8cosθ) = 45.1 cosθ  Newtons  

   
∑Mhinge = 0 = −(45.1cosθ)(0.2m)+[(16)(9.81)N](0.2m)(sinθ); tanθ =0.287, θ = 16°  

If the force and weight are centered in the plate, and the weight and jet flow are constant, the 
answer is independent of the length (40 cm) of the plate. 

 

P3.75 The dredger in Fig. P3.75 is loading sand (SG = 2.6) onto a barge. The sand leaves the 
dredger pipe at 1.2 m/s with a weight flux of 3780 N/s. Estimate the tension on the mooring line 
caused by this loading process. 

Solution: The CV encloses the boat and cuts through the cable and the sand flow jet. Then, 

 

Fig. P3.75 

 
∑Fx = −Tcable = − msandusand = − mVsand cosθ,  

or: Tcable =
3780
9.81

 kg
s







 1.2 m

s






cos 30° ≈ 400 N Ans.  

 

P3.76 Suppose that a deflector is deployed at the exit of the jet engine of Prob. 3.55, as 
shown in Fig. P3.76. What will the reaction Rx on the test stand be now? Is this reaction 
sufficient to serve as a braking force during airplane landing? 
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Solution: From Prob. 3.55, recall that the essential data was 

 
Fig. P3.76 

 
V1 = 250 m/s, V2 = 900 m/s, m1 =151 kg/s, m2 =156 kg/s  

The CV should enclose the entire engine and also the deflector, cutting through the support and 
the 45° exit jets. Assume (unrealistically) that the exit velocity is still 900 m/s. Then, 

 
∑Fx = Rx = moutuout − minuin, where uout = −Vout cos45° and uin =V1  

Then Rx = −156(900cos 45°)−151(250) = −137,000 N  

The support reaction is to the left and equals 137 kN Ans.  

 

P3.77 A thick elliptical cylinder immersed in a water stream creates the idealized wake shown. 
Upstream and downstream pressures are equal, and Uo = 4 m/s, L = 80 cm. Find the drag force on 
the cylinder per unit width into the paper. Also compute the dimensionless drag coefficient CD = 
2F/(ρ Uo2bL). 

 

Fig. P3.77 

Solution: This is a ‘numerical’ version of the “analytical” body-drag Prob. 3.49. The 
student still must make a CV analysis similar to Prob. 3.49 of this Manual. The wake is 
exactly the same shape, so the result from Prob. 3.49 holds here also: 

Fdrag =
1
3
ρUo

2Lb = 1
3
(998)(4)2 (0.8)(1.0) ≈ 4260 N Ans.  

The drag coefficient is easily calculated from the above result: CD =  2/3. Ans. 
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P3.78 A pump in a tank of water directs a jet at 
14 m/s and 12.6 ×10−3m3/s (12.6 L/s)  against 
a vane, as shown in the figure. Compute the 
force F to hold the cart stationary if the jet 
follows (a) path A; or (b) path B. The tank 
holds 2 m3 of water at this instant. 

Solution: The CV encloses the tank and 
passes through jet B. 
(a) For jet path A, no momentum flux crosses 
the CV, therefore F =  0 Ans. (a) 

 
Fig. P3.78 

(b) For jet path B, there is momentum flux, so the x-momentum relation yields: 

 

∑Fx = F = moutuout = mjetuB  
Now we don’t really know uB exactly, but we make the reasonable assumption that the jet 
trajectory is frictionless and maintains its horizontal velocity component, that is, uB ≈ Vjet 

cos 60°. Thus we can estimate 

 
F = muB = 999.8 kg/m3( ) 12.6 ×10−3( )(14 cos60°) ≈ 88.2 N Ans. (b)  

 

P3.79 Water at 20°C flows down a vertical 6-cm-diameter tube at 18.93 L/s, as in the figure. 
The flow then turns horizontally and exits through a 90° radial duct segment 1 cm thick, as 
shown. If the radial outflow is uniform and steady, estimate the forces (Fx, Fy, Fz) required to 
support this system against fluid momentum changes. 

 

Solution: First convert 1893 L/s = 0.01893 m3/s, hence the mass flow is ρQ = 18.9 kg/s. The 
vertical-tube velocity (down) is Vtube = 0.01893/[(π/4)(0.06)2] = −6.69 k m/s. The exit tube 
area is (π/2)RΔh = (π/2)(0.15)(0.01) = 0.002356 m2, hence Vexit = Q/Aexit = 
0.01893/0.002356 = 8.03 m/s. Now estimate the force components: 

 
 

∑Fx = Fx = uout∫ d mout = −Vexit sinθ  ρ
−45°

+45°

∫ ΔhRdθ ≡ 0 Ans. (a)  

 

∑Fy = Fy = vout∫ d mout − mvin = −Vexit cosθ ρ
−45°

+45°

∫ ΔhRdθ − 0 = −VexitρΔhR 2  

 or: Fy = −(8.03)(998)(0.01)(0.15) 2 ≈ −17 N Ans. (b)  

 
 
∑Fz = Fz = m(wout −win ) = (18.9 kg/s)[0 − (−6.69 m/s)] ≈ +126 N Ans. (c)  
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P3.80 A liquid jet of density r and area A 
strikes a block and splits into two jets, as 
shown in the figure. All three jets have the 
same velocity V. The upper jet exits at angle θ 
and area αA, the lower jet turns down at 90° 
and area (1 − α)A. (a) Derive a formula for the 
forces (Fx,Fy) required to support the block 
against momentum changes.(b) Show that 
Fy = 0 only if α  0.5.(c) Find the values of α 
and θ for which both Fx and Fy are zero. 

 

 

Solution: (a) Set up the x- and y-momentum relations: 

 

∑Fx = Fx =α m(−V cosθ)− m(−V ) where m = ρAV of  the inlet  jet

∑Fy = Fy =α mV sinθ + (1−α) m(−V )
 

Clean this up for the final result: 

 

Fx = mV(1−α cosθ )
Fy = mV(α sinθ +α −1) Ans. (a)

 

(b) Examining Fy above, we see that it can be zero only when, 

sinθ = 1−α
α

 

But this makes no sense if α < 0.5, hence Fy =  0 only if α  ≥  0.5. Ans. (b) 
(c) Examining Fx, we see that it can be zero only if cosθ = 1/α, which makes no sense unless 
α = 1, θ = 0°. This situation also makes Fx = 0 above (sinθ = 0). Therefore the only scenario 
for which both forces are zero is the trivial case for which all the flow goes horizontally 
across a flat block: 

Fx = Fy = 0 only if: α = 1, θ = 0° Ans. (c)  
 

P3.81 A two-dimensional sheet of water, 10 
cm thick and moving at 7 m/s, strikes a fixed 
wall inclined at 20° with respect to the jet 
direction. Assuming frictionless flow, find (a) 
the normal force on the wall per meter of 
depth, and the widths of the sheet deflected 
(b) upstream, and (c) downstream along the 
wall. 

 
Fig. P3.81 

Solution: (a) The force normal to the wall is due to the jet’s momentum, 

 
∑FN = − minuin = −(998)(0.1)(7

2 )(cos70°) = 1670N/m Ans.  

(b) Assuming V1 = V2 = V3 = Vjet, VjA1 = VjA2 + VjA3 where, 

A2 = A1 sinθ = (0.1)(1)(sin20°) = 0.034 m ≈ 3 cm Ans.  

(c) Similarly, A3 = A1 cosθ = (0.1)(1)(cos 20°) = 0.094 m ≈ 9.4 cm Ans. 
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P3.82 Water at 20°C flows steadily through 
a reducing pipe bend, as in Fig. P3.82. 
Known conditions are p1 = 350 kPa, D1 = 25 
cm, V1 = 2.2 m/s, p2 = 120 kPa, and D2 = 8 
cm. Neglecting bend and water weight, 
estimate the total force which must be 
resisted by the flange bolts. 

Solution: First establish the mass flow and 
exit velocity: 

 
Fig. P3.82 

 

m = ρ1A1V1 = 998 π
4






(0.25)2(2.2) =108 kg

s
= 998 π

4






(0.08)2V2, or V2 = 21.5 m

s
 

The CV surrounds the bend and cuts through the flanges. The force balance is 

 
∑Fx = −Fbolts + p1,gageA1 + p2,gageA2 = m2u2 − m1u1, where u2 = −V2 and u1 =V1  

  

or Fbolts = (350000 −100000)
π
4
(0.25)2 + (120000 −100000) π

4
(0.08)2 +108(21.5 + 2.2)

=12271+101+ 2553 ≈ 14900 N Ans.
 

 

P3.83 A fluid jet of diameter D1 enters a 
cascade of moving blades at absolute 
velocity V1 and angle β1, and it leaves at 
absolute velocity V2 and angle β2, as in  
Fig. P3.83. The blades move at velocity u. 
Derive a formula for the power P delivered 
to the blades as a function of these 
parameters. 

Solution: Let the CV enclose the blades and 
move upward at speed u, so that the flow 
appears steady in that frame, as shown at 
right. The relative velocity Vo may be 
eliminated by the law of cosines: 

Vo
2 =V1

2 +u2 −2V1ucosβ1
=V2

2 + u2 −2V2ucosβ2
 

 
Fig. P3.83 

 

  solve for u =
(1/2) V1

2 −V2
2( )

V1cosβ1 −V2 cosβ2
 

Then apply momentum in the direction of blade motion: 

 
∑Fy = Fvanes = mjet(Vo1y −Vo2y ) = m(V1cosβ1 −V2cosβ2 ), m = ρA1V1  

The power delivered is P = Fu, which causes the parenthesis “cos β ” terms to cancel: 

 

P = Fu = 1
2
mjet V1

2 −V2
2( ) Ans.  
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P3.84 Air at 20°C and 1 atm enters the bottom of an 85° conical flowmeter duct at a mass 
flow rate of 0.3 kg/s, as shown in the figure. It supports a centered conical body by steady 
annular flow around the cone and exits at the same velocity as it enters. Estimate the weight of 
the body in newtons. 

 

Solution: First estimate the velocity from the known inlet duct size: 

 

ρair =
p
RT

=
101350

287(293)
=1.205 kg

m3 ,

thus m = 0.3 = ρAV = (1.205) π
4

(0.1)2V , solve V = 31.7 m
s

 

Then set up the vertical momentum equation, the unknown is the body weight: 

  ∑Fz = −W = mV cos 42.5°− mV = mV (cos42.5°−1)  

Thus Wcone = (0.3)(31.7)(1− cos42.5°) = 2.5 N Ans.  
 

P3.85 A river (1) passes over a “drowned” weir as shown, leaving at a new condition  
(2). Neglect atmospheric pressure and assume hydrostatic pressure at (1) and (2). Derive an 
expression for the force F exerted by the river on the obstacle. Neglect bottom friction. 

 
Fig. P3.85 

Solution: The CV encloses (1) and (2) and cuts through the gate along the bottom, as 
shown. The volume flow and horizontal force relations give 

V1bh1 =V2bh2  

∑Fx = −Fweir +
1
2
ρgh1(h1b)−

1
2
ρgh2(h2b) = (ρh1bV1)(V2 −V1)  

Note that, except for the different geometry, the analysis is exactly the same as for the sluice 
gate in Ex. 3.10. The force result is the same, also: 

 
Fweir =  1

2
ρgb h1

2 − h2
2( ) − ρh1bV1

2 h1
h2

−1








 Ans.  

 
 



  47 

P3.86 Torricelli’s idealization of efflux 
from a hole in the side of a tank is 

as shown in Fig. P3.86. The 
tank weighs 150 N when empty and 
contains water at 20°C. The tank bottom 
is on very smooth ice (static friction 
coefficient ζ ≈ 0.01). For what water depth 
h will the tank just begin to move to the 
right? 

 

                                                                                                      Fig. P3.86 

Solution: The hole diameter is 9 cm. The CV encloses the tank as shown. The coefficient of 
static friction is ζ = 0.01. The x-momentum equation becomes 

 

or: 0.01 (9790) π
4

(1 m)2 (h + 0.3+ 0.09)+150




= 998 π

4






(0.09)2(2)(9.81)h  

 
 

P3.87 The model car in Fig. P3.87 weighs 
17 N and is to be accelerated from rest by a 
1-cm-diameter water jet moving at 75 m/s. 
Neglecting air drag and wheel friction, 
estimate the velocity of the car after it has 
moved forward 1 m. 

 
Fig. P3.87 

Solution: The CV encloses the car, moves to the left at accelerating car speed V(t), and cuts 
through the inlet and outlet jets, which leave the CS at relative velocity Vj − V. The force 
relation is Eq. (3.50): 

  
∑Fx − arel dm = 0 −mcaracar = moutuout − minuin = −2 mjet (Vj −V)∫ ,  

 
or: mcar

dV
dt

= 2ρAj(Vj −V)
2  

Except for the factor of “2,” this is identical to the “cart” analysis of Example 3.12 on pages 
172–173 of the text. The solution, for V = 0 at t = 0, is given there: 

V =
Vj

2Kt
1+VjKt

, where K =
2ρAj

mcar
=

2(998)(π/4)(0.01)2

(17/9.81)
= 0.0905 m−1  

 
Thus V (in m/s) = 509t

1+ 6.785t
and then compute distance S = V

0

t

∫ dt  

The initial acceleration is 509 m/s2, quite large. Assuming the jet can follow the car without 
dipping, the car reaches S = 1 m at t ≈ 0.072 s, where V ≈  24.6 m/s. Ans. 
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P3.88 Gasoline at 20°C is flowing at V1 = 12 m/s in a 5-cm-diameter pipe when it 
encounters a 1-m length of uniform radial wall suction. After the suction, the velocity has 
dropped to 10 m/s. If p1 = 120 kPa, estimate p2 if wall friction is neglected. 

 

Solution: The CV cuts through sections 1 and 2 and the inside of the walls. We compute the 
mass flow at each section, taking ρ ≈ 680 kg/m3 for gasoline: 

 

The difference, 16.02 − 13.35 = 2.67 kg/s, is sucked through the walls. If wall friction is 
neglected, the force balance (taking the momentum correction factors β ≈ 1.0) is: 

 

 

P3.89 Air at 20°C and 1 atm flows in a 25-
cm-diameter duct at 15 m/s, as in 
Fig. P3.89. The exit is choked by a 90° cone, 
as shown. Estimate the force of the airflow 
on the cone. 

Solution: The CV encloses the cone, as 
shown. We need to know exit velocity. The 
exit area is approximated as a ring of 
diameter 40.7 cm and thickness 1 cm: 

 
Fig. P3.89 

 

The air density is ρ = p/RT = (101350)/[287(293)] ≈ 1.205 kg/m3. We are not given any 
pressures on the cone so we consider momentum only. The force balance is 

 

The force on the cone is to the right because we neglected pressure forces. 
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P3.90 The thin-plate orifice in Fig. P3.90 causes a large pressure drop. For 20°C water flow at 
1.893 m3/min, with pipe D = 10 cm and orifice d = 6 cm, p1 − p2 ≈ 145 kPa. If the wall friction 
is negligible, estimate the force of the water on the orific plate. 

 
Fig. P3.90 

Solution: The CV is inside the pipe walls, cutting through the orifice plate, as shown. At 
least to one-dimensional approximation, V1 = V2, so there is no momentum change. The 
force balance yields the force of the plate on the fluid: 

 
∑Fx = −Fplate on fluid + p1A1 − p2A2 − τwallAwall = m(V2 −V1) ≈ 0  

Since τwall ≈ 0, we obtain Fplate = (145000) π
4

(0.1)2 ≈ 1140 N Ans.  

The force of the fluid on the plate is opposite to the sketch, or to the right. 
 

P3.91 For the water-jet pump of Prob. 3.38, 
add the following data: p1 = p2 = 172.4 kPa, 
and the distance between sections 1 and 3 is 
2.032 m. If the average wall shear stress 
between sections 1 and 3 is 335 Pa, estimate 
the pressure p3. Why is it higher than p1? 

 
Fig. P3.38 

Solution: The CV cuts through sections 1, 2, 3 and along the inside pipe walls. Recall from 
Prob. 3.36 that mass conservation led to the calculation V3 ≈  6.33 m/s. We need mass flows 
for each of the three sections: 

 

m1 = 998 π
4






(0.0762)2(40) ≈ 182 kg

s
;

m2 = 998 π
4






[(0.254)2 − (0.0762)2 ](3) ≈ 138 kg

s
and m3 ≈ 182 +138 ≈ 320 kg

s

 

Then the horizontal force balance will yield the (high) downstream pressure: 

 

∑Fx = p1(A1 +A2)− p3A3 − τwallπD2L = m3V3 − m2V2 − m1V1

= (172400 − p3)
π
4
(0.254)2 − 335π(0.254)(2.032) = 320(6.33)−138(3)−182(40)

 

   Solve for p3 ≈ 274000 Pa Ans.  

The pressure is high because the primary inlet kinetic energy at section (1) is converted by 
viscous mixing to pressure-type energy at the exit. 
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P3.92     A vane turns a water jet through an 

angle α, as shown in Fig. P3.92.   Neglect 

friction on the vane walls.  (a) What is the 

angle α  for the support force to be in pure  

compression?  (b) Calculate this compression force 

if the water velocity is 6.5 m/s and the jet cross-section is 25 cm2. 

Solution:  (a) From the solution to Example 3.8, the support will be in pure compression 
(aligned with F) if the vane angle is twice the support angle. 

Therefore     α  =  2(25°)  =     50°        Ans.(a) 

(b) The mass flow of the jet is 

   
m = ρAjetV jet = (999.8)(25×10−4m2 )2 (6.5)=16.25 kg/s  

Then, also from Example 3.8, the magnitude of the support force is 

    
F = 2 m V sinα

2
= 2(16.25 kg/s)(6.5 m/s)sin(50o

2
) = 89.3 N Ans.(b)  

 

P3.93 The boat in Fig. P3.93 is jet-propelled by a pump which develops a volume flow rate Q 
and ejects water out the stern at velocity Vj. If the boat drag force is F = kV2, where k is a 
constant, develop a formula for the steady forward speed V of the boat. 

 

Fig. P3.93 

Solution: Let the CV move to the left at boat speed V and enclose the boat and the pump’s 
inlet and exit. Then the momentum relation is 

  
∑Fx = kV2 = mpump(Vj +V −Vinlet ) ≈ ρQ(Vj +V) if we assume Vinlet << Vj  

If, further, , then the approximate solution is: V ≈  (ρQVj/k)1/2 Ans. 
If V and Vj are comparable, then we solve a quadratic equation: 

V ≈ ζ + [ζ 2 + 2ζVj]
1/2, where ζ = ρQ

2k
Ans.  

 

V 
 
 
 

V 
 
 
 

25° 

α 
 
 
 

F Fig. P3.92 
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P3.94 Consider Fig. P3.38 as a general problem for analysis of a mixing ejector pump. If all 
conditions (p, ρ, V) are known at sections 1 and 2 and if the wall friction is negligible, derive 
formulas for estimating (a) V3 and (b) p3. 

Solution: Use the CV in Prob. 3.91 but use symbols throughout. For volume flow, 

 V1
π
4
D1
2 +V2

π
4
D2
2 −D1

2( ) =V3π4 D2
2, or: V3 =V1α +V2(1−α), α = (D1/D2)

2  (A) 

Now apply x-momentum, assuming (quite reasonably) that p1 = p2: 

(p1 − p3)
π
4
D2
2 − τwπD2L = ρ

π
4
D2
2V3

2 − ρ
π
4
D2
2 −D1

2( )V22 − ρ π4 D1
2V1

2  

  
Clean up: p3 = p1 − 4Lτ w

D2
+ ρ αV1

2 + (1−α)V2
2 −V3

2



 where α =

D1
D2











2

Ans.  

You have to insert V3 into this answer from Eq. (A) above, but the algebra is messy. 
 

P3.95 As shown in Fig. P3.95, a liquid column of height h is confined in a vertical tube of 
cross-sectional area A by a stopper. At t = 0 the stopper is suddenly removed, exposing the 
bottom of the liquid to atmospheric pressure. Using a control-volume analysis of mass and 
vertical momentum, derive the differential equation for the downward motion V(t) of the 
liquid. Assume one-dimensional, incompressible, frictionless flow. 

 
Fig. P3.95 

Solution: Let the CV enclose the cylindrical blob of liquid. With density, area, and the blob 
volume constant, mass conservation requires that V = V(t) only. The CV accelerates 
downward at blob speed V(t). Vertical (downward) force balance gives 

 

∑Fdown − arel dm =
d
dt

Vdown∫ ρ dυ( ) + moutVout − minVin = 0∫  

or: mblobg +ΔpA − τwAw − amblob = 0  

Since Δp = 0 and τ = 0, we are left with ablob =
dV
dt

= g Ans.  
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P3.96 Extend Prob. 3.95 to include a linear (laminar) average wall shear stress of the form 
τ ≈ cV, where c is a constant. Find V(t), assuming that the wall area remains constant. 

Solution: The downward momentum relation from Prob. 3.95 above now becomes 

0 =mblobg − τwπDL −mblob
dV
dt
, or dV

dt
+ζV = g, where ζ = cπDL

mblob
 

where we have inserted the laminar shear τ = cV. The blob mass equals ρ(π/4)D2L. For V = 
0 at t = 0, the solution to this equation is 

V = g
ζ

(1− e−ζ t ), where ζ = cπDL
mblob

=
4c
ρD

Ans.  

 

P3.97 A more involved version of Prob. 3.95 is the elbow-shaped tube in Fig. P3.97, with 
constant cross-sectional area A and diameter  L. Assume incompressible flow, neglect 
friction, and derive a differential equation for dV/dt when the stopper is opened. Hint: Combine 
two control volumes, one for each leg of the tube. 

Solution: Use two CV’s, one for the vertical blob and one for the horizontal blob, 
connected as shown by pressure.  

 
Fig. P3.97 

 

From mass conservation, V1 = V2 = V(t). For CV’s #1 and #2, 

 
 

∑Fdown − arel dm = Δ( mv) = 0 = (patm − pI)A+ ρgAh −m1
dV
dt∫  (No. 1) 

 
 

∑Fx − arel dm = Δ( mu) = 0 = (pI − patm)A+ 0 −m2
dV
dt∫  (No. 2) 

Add these two together. The pressure terms cancel, and we insert the two blob masses: 

ρgAh − (ρAh + ρAL) dV
dt

= 0, or: dV
dt

= g h
L+ h

Ans.  
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P3.98 According to Torricelli’s theorem, the velocity of a fluid draining from a hole in a tank 
is V ≈ (2gh)1/2, where h is the depth of water above the hole, as in Fig. P3.98. Let the hole 
have area Ao and the cylindrical tank have cross-section area Ab. Derive a formula for the 
time to drain the tank from an initial depth ho. 

 
Fig. P3.98 

Solution: For a control volume around the tank, 

  
d
dt

ρ dv∫ + mout = 0  

   
ρAb

dh
dt

= − mout ≈ −ρAo 2gh  

dh
h
=

Ao 2g
Ab0

t

∫ dt;
ho

0

∫ t = Ab
Ao

ho
2g

Ans.  

 

P3.99     A water jet 7.5 cm in diameter strikes 

a concrete (SG = 2.3) slab which rests freely on 

a level floor.  If the slab is 30 cm wide into the 

paper, calculate the jet velocity which will 

just begin to tip the slab over. 

 
Solution:   For water let ρ = 999.8 kg/m3.  Find the water force and then take moments about the 
lower left corner of the slab, point B.  A control volume around the water flow yields 
        

    

Fx∑ = Fon jet = Σ mout uout − Σ min uin = mout (0) − ρ A V (−V ) , F = ρ AV 2

M B∑ = (ρ AV 2 )(0.5375 m) −Wslab (0.1 m), Wslab= (2.3×1000)(0.2 m)(0.9 m)(0.3 m)× 9.81 m/s2

= 1218.4 N

Thus (999.8) π
4

(0.075 m)2 V 2(0.5375 m) = (1218.4 N)(0.1 m) , solve for V jet = 7.16 m / s Ans.

 
 

V 90 cm 

20 cm 

50 cm 

Fig. P3.99 

7.5 cm 

B 
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3.100     A cylindrical water tank discharges through a well-rounded orifice to hit a plate, as 

in Fig. P3.100. Use the Torricelli formula of Prob. P3.86 to estimate the exit velocity. (a) If, 

at this instant, the force F required to hold the plate is 40 N, what is the depth h ? (b)  If the 

tank surface is dropping at the rate of 5 cm every 2 seconds, what is the tank diameter  D? 

 

Solution:  For water take ρ = 998 kg/m3.  The control volume surrounds the plate and yields 

 

ΣFx = F = − minuin = − mjet (−Vjet ) = ρAjetVjet (Vjet ) = ρ
π
4
d 2Vjet

2

But Torricelli says Vjet
2 = 2gh ; Thus h =

F
ρ(π / 4)d 2 (2g)

Given data : h =
40N

(998kg / m3)(π / 4)(0.04m)2 (2)(9.81m / s2 )
= 1.63m Ans.(a)

 

(b)  In 2 seconds, h drops from 1.63m to 1.58m, not much change.  So, instead of a  
laborious calculus solution, find Qjet,av for an average depth  hav = (1.63+1.58)/2 = 1.605 m: 

Qav = Ajet 2ghav =
π
4
(0.04m)2 2(9.81m / s2 )(1.605m) ≈ 0.00705m3 / s

Equate QΔt = AtankΔh , or : D =
QΔt

(π / 4)Δh
=

(0.00705)(2s)
(π / 4)(0.05m)

≈ 0.60m Ans.(b)
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P3.101 Extend Prob. 3.95 to the case of the 
liquid motion in a frictionless U-tube whose 
liquid column is displaced a distance Z upward 
and then released, as in Fig. P3.101. Neglect 
the short horizontal leg and combine control-
volume analyses for the left and right legs to 
derive a single differential equation for V(t) of 
the liquid column. 

Solution: As in Prob. 3.97, break it up into 
two moving CV’s, one for each leg, as 
shown. By mass conservation, the velocity 
V(t) is the same in each leg. Let pI be the 
bottom pressure in the (very short) cross-over 
leg. Neglect wall shear stress. Now apply 
vertical momentum to each leg: 

Leg#1: ∑Fdown − arel dm∫  

= (pa − pI)A+ ρgAh1 −m1
dV
dt

= 0  

 
Fig. P3.101 

 

Leg#2: ∑Fup − arel dm∫ = (pI − pa)A − ρgAh2 −m2
dV
dt

= 0  

Add these together. The pressure terms will cancel. Substitute for the h’s as follows: 

ρgA(h1 − h2 ) = ρgA(2Z) = (m1 +m2)
dV
dt

= ρA(h1 + h2 )
dV
dt

= ρAL dV
dt

 

Since V = −
dZ
dt

, we arrive at, finally, d2Z
dt2

+
2g
L
Z = 0 Ans.  

The solution is a simple harmonic oscillation: Z = C cos t (2g/L)



+D sin t (2g/L)



.  

 

P3.102 Extend Prob. 3.101 to include a linear (laminar) average wall shear stress resistance 
of the form τ ≈ 8µV/D, where µ is the fluid viscosity. Find the differential equation for dV/dt 
and then solve for V(t), assuming an initial displacement z = zo, V = 0 at t = 0. The result 
should be a damped oscillation tending toward z = 0. 

Solution: The derivation now includes wall shear stress on each leg (see Prob. 3.101): 

Leg#1: ∑Fdown − arel dm = ΔpA+ ρgAh1 − τwπDh1 −m1
dV
dt

= 0∫  

Leg#2: ∑Fup − arel dm = −ΔpA − ρgAh2 − τwπDh2 −m2
dV
dt

= 0∫  

Again add these two together: the pressure terms cancel, and we obtain, if A = πD2/4, 

d2Z
dt2

+
4τw
ρD

+
2g
L
Z = 0, where τw =

8µV
D

Ans.  
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The shear term is equal to the linear damping term (32µ /ρD2)(dZ/dt). If we assume an initial 
static displacement Z = Zo, V = 0, at t = 0, we obtain the damped oscillation 

Z = Zoe
−t / t*cos(ωt), where t* = ρD

2

16µ
and ω = 2g / L Ans.  

 

P3.103 As an extension of Ex. 3.10, let the plate and cart be unrestrained, with frictionless 
wheels. Derive (a) the equation of motion for cart velocity Vc(t); and (b) the time required for 
the cart to accelerate to 90% of jet velocity. (c) Compute numerical values for (b) using the 
data from Ex. 3.10 and a cart mass of 2 kg. 

 

Solution: (a) Use Eq. (3.49) with arel equal to the cart acceleration and ∑Fx = 0: 

∑Fx − ax,relm = uρV∫ ⋅ndA = −mc
dVc
dt

= −ρj Aj (Vj −Vc)
2 Ans. (a)  

The above 1st-order differential equation can be solved by separating the variables: 

dVc
(Vj −Vc )

2 = K dt, where K =
ρAj

mc0

t

∫
0

Vc

∫  

  
Solve for: Vc

Vj
=

VjKt
1+VjKt

= 0.90 if t90% =
9
KVj

=
9mc

AjVj
Ans. (b)  

 
For  the Example 3.10 data, t90% =

9(2 kg)
(1000 kg/m3)(0.0003 m2)(20 m/s)

≈ 3.0 s Ans. (c)  

 

P3.104 Let the rocket of Fig. E3.12 start at z = 0, with constant exit velocity and exit mass 
flow, and rise vertically with zero drag. (a) Show that, as long as fuel burning continues, the 
vertical height S(t) reached is given by 

  
S = VeMo

m
[ζ lnζ −ζ +1], where ζ =1− mt

Mo
 

(b) Apply this to the case Ve = 1500 m/s and Mo = 1000 kg to find the height reached after a 
burn of 30 seconds, when the final rocket mass is 400 kg. 
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Solution: (a) Ignoring gravity effects, integrate the equation of the projectile’s velocity 
(from E3.12): 

  
S(t) = V (t)dt = −Ve ln 1−

mt
Mo





















0

t

∫∫ dt  

  
Let  ζ =1− mt

Mo
, then dζ = − m

Mo
dt and  the integral  becomes,  

  
S(t) = (−Ve )

−Mo

m





(ζ lnζ )dζ = VeMo

m








1

ζ

∫ [ζ lnζ −ζ ]1
ζ =

VeMo

m






[ζ lnζ −ζ +1]  

(b) Substituting the numerical values given, 

 

m =
ΔM
Δt

=
M f −Mo

Δt
=

1000 kg − 400 kg
30 s

= 20 kg/s and ζ =1− (20 kg/s)(30 s)
1000 kg

= 0.40  

S(t = 30 s) = (1500 m/s)(1000 kg)
(20 kg/s)

[0.4 ln(0.4)− (0.4)+1] = 17,500 m Ans.  

 

P3.105 Suppose that the solid-propellant rocket of Prob. 3.37 is built into a missile of 
diameter 70 cm and length 4 m. The system weighs 1800 N, which includes 700 N of 
propellant. Neglect air drag. If the missile is fired vertically from rest at sea level, estimate (a) 
its velocity and height at fuel burnout and (b) the maximum height it will attain. 

Solution: The theory of Example 3.12 holds until burnout. Now Mo = 1800/9.81 = 183.5 kg, 
and recall from Prob. 3.37 that Ve = 1150 m/s and the exit mass flow is 11.8 kg/s. The fuel 
mass is 700/9.81 = 71.4 kg, so burnout will occur at tburnout = 71.4/11.8 = 6.05 s. Then 
Example 3.12 predicts the velocity at burnout: 

Vb = −1150 ln 1− 11.8(6.05)
183.5







− 9.81(6.05) ≈ 507 m

s
Ans. (a)  

Meanwhile, Prob. 3.104 gives the formula for altitude reached at burnout: 

Sb =
183.5(1150)

11.8
[1+ (0.611){ln(0.611)−1}]− 1

2
(9.81)(0.605)2 ≈ 1393 m Ans. (a)  

where “0.611” = 1 – 11.8(6.05)/183.5, that is, the mass ratio at burnout. After burnout, with 
drag neglected, the missile moves as a falling body. Maximum height occurs at 

Δt = Vo

g
=

507
9.81

= 51.7 s,  whence  

S = So +
1
2

gΔt2 =1393+ (1/2)(9.81)(51.7)2 ≈ 14500 m Ans. (b)  
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P3.106     Water at 20°C flows steadily through the 

tank in Fig. P3.106.  Known conditions are 

D1 = 8 cm, V1 = 6 m/s, and D2 = 4 cm.  A rightward 

force F = 70 N is required to keep the tank fixed. 

(a) What is the velocity leaving section 2? 

(b) If the tank cross-section is 1.2 m2, how fast is the water surface h(t) rising or falling? 

Solution:  First, for water at 20°C, ρ  = 998 kg/m3.  (a) For a control volume around the tank, 
 

             

    

Fx∑ = F = m2 u2 − m1 u1= m2 (−V2 ) − m1 (−V1)

or : 70 N = [(998) π
4

(0.04m)2V2](−V2 ) + [(998) π
4

(0.08m)2(6 m
s

)](6 m
s

)

= −1.254 V2
2 + 180.6 N , solve V2 =

70−180.6
−1.254

= 9.39 m
s

Ans.(a)

 

 
(b) The mass flows at 1 and 2 are not equal.  The difference in volume flow moves the surface: 

   

Atank
dh
dt

= Q1−Q2 =
π
4

(0.08m)2(6 m
s

) − π
4

(0.04m)2(9.39 m
s

)

or : (1.2m2 ) dh
dt

= 0.0302−0.0118 = 0.0184 m3

s
, solve dh

dt
≈ + 0.0153 m

s
↑ Ans.(b)

 

 

P3.107 As can often be seen in a kitchen 
sink when the faucet is running, a high-
speed channel flow (V1, h1) may “jump” to a 
low-speed, low-energy condition (V2, h2) as 
in Fig. P3.107. The pressure at sections 1 and 
2 is approximately hydrostatic, and wall 
friction is negligible. Use the continuity and 
momentum relations to find h2 and V2 in 
terms of (h1, V1). 

 
Fig. P3.107 

Solution: The CV cuts through sections 1 and 2 and surrounds the jump, as shown. Wall 
shear is neglected. There are no obstacles. The only forces are due to hydrostatic pressure: 

 

 

∑Fx = 0 = 1
2
ρgh1(h1b)− 1

2
ρgh2(h2b) = m(V2 −V1),

where m = ρV1h1b = ρV2h2b
 

Solve for V2 = V1h1 / h2 and h2 /h1 = −
1
2
+
1
2
1+ 8V1

2 / (gh1) Ans.  

 

h(t) 2 1 

Fig. P3.106 

 F 
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P3.108 Suppose that the solid-propellant rocket of Prob. 3.37 is mounted on a 1000-kg car 
to propel it up a long slope of 15°. The rocket motor weighs 900 N, which includes 500 N 
of propellant. If the car starts from rest when the rocket is fired, and if air drag and wheel 
friction are neglected, estimate the maximum distance that the car will travel up the hill. 

Solution: This is a variation of Prob. 3.105, except that “g” is now replaced by “g sinθ.” 
Recall from Prob. 3.37 that the rocket mass flow is 11.8 kg/s and its exit velocity is 1150 m/s. 
The rocket fires for tb = (500/9.81)/11.8 = 4.32 sec, and the initial mass is Mo = (1000 + 
900/9.81) = 1092 kg. Then the differential equation for uphill powered motion is 

 

m dV
dt

= mVe −mgsinθ, m =Mo − mt  

 
This integrates to: V(t) = −Ve ln(1− mt/Mo )− gt sinθ for t ≤ 4.32 s.  

After burnout, the rocket coasts uphill with the usual falling-body formulas with “g sinθ.” The 
distance travelled during rocket power is modified from Prob. 3.104: 

 

S = (MoVe/ m)[1+ (1− mt/Mo ){ln(1− mt/Mo )−1}]−
1
2
gt2 sinθ  

Apply these to the given data at burnout to obtain 

Vburnout = −1150 ln(0.9533)− 1
2

(9.81)sin15°(4.32) ≈ 44.0 m/s  

Sburnout =
1092(1150)

11.8
[1+ 0.9533{ln(0.9533)−1}]− 1

2
(9.81)sin15°(4.32)2 ≈ 94 m  

The rocket then coasts uphill a distance ΔS such that Vb2 = 2gΔS sinθ, or ΔS = 
(44.0)2/[2(9.81)sin 15°] ≈ 381 m. The total distance travelled is 381 + 94 ≈ 475 m Ans. 

 

P3.109 A rocket is attached to a rigid 
horizontal rod hinged at the origin as in Fig. 
P3.109. Its initial mass is Mo, and its exit 
properties are  and Ve relative to the 
rocket. Set up the differential equation for 
rocket motion, and solve for the angular 
velocity ω(t) of the rod. Neglect gravity, air 
drag, and the rod mass. 

 
Fig. P3.109 

 
Solution: The CV encloses the rocket and moves at (accelerating) rocket speed Ω(t). The 
rocket arm is free to rotate, there is no force parallel to the rocket motion. Then we have 

 

∑Ftangent = 0 − arel dm = m(−Ve ), or mR dΩ
dt

= mVe, where m = Mo − mt∫  

 

Integrate, with Ω = 0 at t = 0, to obtain Ω = − Ve

R
ln 1− mt

Mo









 Ans.  
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P3.110 Extend Prob. 3.109 to the case where the rocket has a linear air drag force F = cV, 
where c is a constant. Assuming no burnout, solve for ω(t) and find the terminal angular 
velocity, i.e., the final motion when the angular acceleration is zero. Apply to the case Mo = 6 
kg, R = 3 m, m = 0.05 kg/s, Ve = 1100 m/s, and c = 0.075 N·s/m to find the angular velocity 
after 12 s of burning. 

Solution: If linear resistive drag is added to Prob. 3.109, the equation of motion becomes 

 

m dΩ
dt

=
mVe

R
−CΩ, where m = Mo − mt, with Ω = 0 at t = 0  

The solution is found by separation of variables: 

 

If B = mVe /R, then dΩ
B−CΩ0

Ω

∫ =
dt

Mo − mt
, or: Ω =

B
C
1− 1− mt

Mo











C/ m











Ans. (a)
0

t

∫  

Strictly speaking, there is no terminal velocity, but if we set the acceleration equal to zero in 
the basic differential equation, we obtain an estimate Ω term =  mVe/(RC). Ans. (b) 

For the given data, at t = 12 s, we obtain the angular velocity 

At t =12 s: Ω =
(0.05)(1100)
(3.0)(0.075)

1− 1− 0.05(12)
6.0









0.075
0.05














≈ 36 rad

sec
Ans. (c)  

 

P3.111     Actual air flow past a parachute creates 

a variable distribution of velocities and directions. 

Let us model this as a circular air jet, of diameter 

half the parachute diameter, which is turned 

completely around by the parachute, as in Fig. P3.111.   Fig. P3.111  

(a) Find the force F required to support the chute.  

(b) Express this force as a dimensionless drag coefficient, CD = F/[(1/2)ρV2(π/4)D2] and 

compare with Table 7.3.    

Solution:  This model is crude, compared to velocity-field theory, but gives the right order of 
magnitude.  (a) Let the control volume surround the parachute and cut through the oncoming 
and leaving air streams: 

    

Fx∑ = −F = muout − muin = m(−V ) − m(+V ) ,

or : F = 2 m V = 2(ρ Ajet V )V = 2ρ[ π
4

( D
2

)2]V 2 =
!
8
ρD2 V2 Ans.(a)

 

 
 

D 

D/2 

ρ, V 

F 
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(b) Express this approximate result as a dimensionless drag coefficient: 

 

From Table 7.3, actual measurements show a parachute drag coefficient of about  1.2.  Not bad! 

________________________________________________________________________ 

P3.112 The cart in Fig. P3.112 moves at 
constant velocity Vo = 12 m/s and takes on 
water with a scoop 80 cm wide which dips h 
= 2.5 cm into a pond. Neglect air drag and 
wheel friction. Estimate the force required to 
keep the cart moving.  

Fig. P3.112 

Solution: The CV surrounds the cart and scoop and moves to the left at cart speed Vo. 
Momentum within the cart fluid is neglected. The horizontal force balance is 

 

 
 

 
P3.113 A rocket sled of mass M is to be 
decelerated by a scoop, as in Fig. P3.113, which 
has width b into the paper and dips into the 
water a depth h, creating an upward jet at 60°. 
The rocket thrust is T to the left. Let the initial 
velocity be Vo, and neglect air drag and wheel 
friction. Find an expression for V(t) of the sled 
for (a) T = 0 and (b) finite T ≠ 0. 

 
Fig. P3.113 

 
Solution: The CV surrounds the sled and scoop and moves to the left at sled speed V(t). 
Let x be positive to the left. The horizontal force balance is 

 

 

Whether or not thrust T = 0, the variables can be separated and integrated: 

 

 

where  

This solution only applies when Vo < Vfinal, which may not be the case for a speedy sled. 
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P3.114    For the boundary layer flow in Fig. 3.10, let the exit velocity profile, at x = L , 
simulate turbulent flow, u ≈ Uo(y/δ)1/7.  (a) Find a relation between h and δ.  (b) Find an 
expression for the drag force F on the plate between 0 and L. 
 
Solution:   (a)  Since the upper and lower boundaries of the control volume are streamlines, 
the mass flow in, at x=0, must equal the mass flow out, at x=L. 

   

d min∫ = ρUo0
h
∫ bdy = ρUobh = d mout∫ = ρUo0

δ
∫ ( y

δ
)1/7 bdy = 7

8
ρUobδ

after cancellation, h =
7
8
δ Ans.(a)

 

(b)  Instead of blindly using Karman’s formula from Example 3.10, derive the drag force in 
straightforward control volume momentum-integral fashion: 

   

Fx∑ = −F = uout d mout∫ − uin∫ d min = Uo0
δ
∫ ( y

δ
)1/7[ρUo( y

δ
)1/7 ]bdy− UoρUo bdy

0
h
∫

or : F = ρUo
2 bδ (7

8
−

7
9

) =
7

72
ρUo

2 bδ Ans.(b)
 

 

P3.115     Consider the same conditions as given in Prob. P3.64, but the pressure on the 
corner annular ring equals to p(r) = p1 + (r – R1)(P1 – P2) for R2 ≥ r ≥ R1, where R2 and R1 are 
the radius of the pipe at ➁ and ➀ respectively. Derive the downstream pressure. 
 
Solution: Linear momentum equation in x-direction is given as 

   

∑Fx = P1A1 + ρ dA− P2R1

R2∫ A2 = m(V2 −V1)where m = ρA1V1

V2 =
V1A1

A2

∴    P1A1 + [P1 + (r − R1)
R1

R2∫ (P1 − P2 )]dA = ρA1V1
2 A1

A2
−1









,  dA = 2πrdr

 

with some manipulations 

  

π R2
2 +

2
3

(R2
3 − R1

3) − R1(R2
2 − R1

2 )








P1

−π
2
3

(R2
3 − R1

3) − R1(R2
2 − R1

2 )








P2 = ρA1V1

2 A1
A2

−1










∴    P2 =

π R2
2 +

2
3

(R2
3 − R1

3) − R1(R2
2 − R1

2 )








P1 + ρA1V1

2 1−
A1
A2











π
2
3

(R2
3 − R1

3) − R1(R2
2 − R1

2 )









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P3.116    In the firefighting nozzle model shown in Fig. 3.116, water steadily flows in the z 
direction at the base diameter D with flow rate Q under pressure P. Water exits through the 
nozzle diameter d. Calculate the forces to hold the nozzle at its base. 
 
Solution:   From conservation of mass, 

   


V1 =

Q

k

A1
=

4Q
πD2


k

V2 =
Q
A2

=
4Q
πd2


V2 = V2 (sinφ cosθ


i + sinφ sinθ


j+ cosφ


k)

 

Consider linear momentum equation, 

  


F =

∂
∂t


Vρ

CV∫ dV +


Vρ
CS∫


V ⋅ d

A  

Since we consider our calculation at steady flow condition, we then have 

  

F =

FS +


FB =


Vρ

CS∫


V ⋅ d

A  

Assume that the nozzle with water weighs WN, we would have 

   


FS +


FB = pA1


k −W


k +

Fbase = mout


V2 − min


V1

∴     

Fbase = ρQ 4Q

πd2




 (sinφ cosθ


i + sinφ sinθ


j+ cosφ


k) −4Q


k

πD2




+ (W − pA1)


k

       

Fbase =

4ρQ2

πd2
(sinφ cosθ


i + sinφ sinθ


j)+ 4ρQ2

π







1
d2( cosφ − 1

D2 ) + w− πρD2

4








k

 

 

P3.117 Repeat Prob. 3.54 by assuming that p1 is unknown and using Bernoulli’s equation 
with no losses. Compute the new bolt force for this assumption. What is the head loss between 
1 and 2 for the data of Prob. 3.54? 

 
Fig. P3.54 

 
Solution: Use one-dimensional, incompressible continuity to find V1: 

  
V1 A1 =V1 (π / 4)(0.3)2 = V2 A2 = (17 m/s) π

4
(0.15)2 , or V1 = 4.25 m/s  
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Bernoulli’s equation with no losses to estimate p1 with Δz = 0: 

p1

γ
+

(4.25)2

2(9.81)
≈

103.42 ×103

(998)(9.81)
+

(17)2

2(9.81)
, solve for p1,ideal ≈ 238.62 kPa(abs)  

From the x-momentum CV analysis of Prob. 3.54, the bolt force is given by 

 

Fbolts = p2,gageA2 − m V2 −V1( )

= 238.62 ×103 −103.42 ×103( ) π4 0.3( )2 − 998 π
4






 0.3( )2 4.25( ) 17 − 4.25( ) ≈ 57340 N Ans.

 
We can estimate the friction head loss in Prob. 3.54 from the steady flow energy equation, 
with p1 taken to be the value of 262 kPa given in that problem: 

262 ×103

(998)(9.81)
+

(4.25)2

2(9.81)
=

103.42 ×103

(998)(9.81)
+

(17)2

2(9.81)
+ hf , solve for hf ≈ 2.4 m Ans.  

 

P3.118         Extend the siphon analysis of Ex. 3.22 as follows.  Let p1 = 1 atm and let the fluid be 
hot water at 60°C.  Let z1,2,4  be the same, with z3 unknown.  Find the value of z3 for which the water 
might begin to vaporize. 
 
Solution:   Given p1 = 101350 Pa and recall that z1 = 60 cm, z2  = -25 cm, and  z4  was not needed.  
Then note that, because of steady-flow one-dimensional continuity, from Ex. 3.22, 

V3 = V2 = 2g(z1 − z2 ) = 2(9.81)[0.6 − (−0.25)] = 4.08m / s  

For cavitation,  p3  should drop down to the vapor pressure of water at 60°C, which from Table A.5 
is 19.92 kPa.  And, from Table A.3, the density of water at 60°C is 983 kg/m3.  Now write Bernoulli 
from point 1 to point 3 at the top of the siphon: 

p1
ρ

+
V1
2

2
+ gz1 =

p3
ρ

+
V3
2

2
+ gz3

101350
983

+
02

2
+ (9.81)(0.6m) = 19920Pa

983kg / m3 +
(4.08m / s)2

2
+ 9.81z3

103.1 + 0 + 5.9 = 20.3 + 8.3 + 9.81z3 , Solve z3 ≈
80.4
9.81

= 8.2 m Ans.

 

That’s pretty high, so the writer does not think cavitation is a problem with this siphon. 

________________________________________________________________________ 
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P3.119 A jet of alcohol strikes the vertical plate in Fig. P3.119. A force F ≈ 425 N is 
required to hold the plate stationary. Assuming there are no losses in the nozzle, estimate 
(a) the mass flow rate of alcohol and (b) the absolute pressure at section 1. 

 

 
 
Solution: A momentum analysis of the plate (e.g. Prob. 3.45) will give 

 

F = mV2 = ρA2V2
2 = 0.79(998) π

4
(0.02)2 V2

2 = 425 N,

solve for V2 ≈ 41.4 m/s
 

 
whence m = 0.79(998)(π/4)(0.02)2 (41.4) ≈ 10.3 kg / s Ans. (a)  

We find V1 from mass conservation and then find p1 from Bernoulli with no losses: 

Incompressible mass conservation: V1 =V2 (D2 /D1)2 = (41.4) 2
5







2

≈ 6.63 m/s  

Bernoulli, z1 = z2: p1 = p2 +
1
2
ρ V2

2 −V1
2( ) =101000 + 0.79(998)

2
[(41.4)2 − (6.63)2 ]  

                                        ≈ 760,000 Pa Ans. (b)  
_____________________________________________________________________________ 
 
P3.120  An airplane is flying at 134 m/s at 4000 m standard altitude.  As is typical, the air 
velocity relative to the upper surface of the wing, near its maximum thickness, is 26 percent 
higher than the plane’s velocity.  Using Bernoulli’s equation, calculate the absolute pressure at 
this point on the wing.  Neglect elevation changes and compressibility. 
 
Solution:  Fix the frame of steady flow relative to 
the wing.  Let point 1 be the oncoming stream and 
point 2 be the maximum thickness point.  From Table A.5, 
at 4000 m, p = 61,633 Pa, and ρ = 0.8191 kg/m3. Then the velocity U2 at the max thickness 
point is 1.26(134)  = 169 m/s.  Then, from the figure, 
 

               

   

p1 +
1
2
ρU 1

2 ≈ (61633)+ 1
2

(0.8191)(134)2 = p2 +
1
2
ρU2

2 = p2 +
1
2

(0.8191)(169)2

Solve for p2 = 57,300 Pa on the upper surface Ans.
 

 
If the elevation change were accounted for, the answer would differ by less than one Pascal. 
_____________________________________________________________________________ 
 

Fig. 3.119 

Uo 
1.26 Uo 
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P3.121 Water flows through a circular nozzle, exits into the air as a jet, and strikes a plate, 
as in Fig. P3.121. The force required to hold the plate steady is 70 N. Assuming frictionless 
one-dimensional flow, estimate (a) the velocities at sections (1) and (2); (b) the mercury 
manometer reading h. 
 
Solution: (a) First examine the momentum of the jet striking the plate, 
 

 
∑F = F = − minuin = −ρA2V2

2  

 
Fig. P3.121 

 

70 N = −(998) π
4






(0.032 )(V2

2 ) V2 = 9.96 m / s Ans. (a)  

Then V1 =
V2A2

A1
=

(9.96) π
4






(0.032 )

π
4

(0.12 )
or V1 = 0.9 m / s Ans. (a)  

(b) Applying Bernoulli, 

p2 − p1 =
1
2
ρ V2

2 −V1
2( ) = 1

2
(998)(9.962 − 0.92 ) = 49,100 Pa  

And from our manometry principles, 

   
h = Δp

Δ(ρg)
=

49,100
(133,100 − 9790)

≈ 0.40 m Ans. (b)  

_____________________________________________________________________________ 
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P3.122 A free liquid jet, as in Fig. P3.122, has constant ambient pressure and small losses; hence 
from Bernoulli’s equation  z + V2/(2g) is constant along the jet. For the fire nozzle in the figure, what 
are (a) the minimum and (b) the maximum values of θ for which the water jet will clear the corner 
of the building? For which case will the jet velocity be higher when it strikes the roof of the 
building? 

 
Fig. P3.122 

 
Solution: The two extreme cases are when the jet just touches the corner A of the building. 
For these two cases, Bernoulli’s equation requires that 

V1
2 + 2gz1 = (30)

2 + 2g(0) =VA
2 + 2gzA =VA

2 + 2(9.81)(15), or: VA = 24.6
m
s

 

The jet moves like a frictionless particle as in elementary particle dynamics: 

 

Eliminate “t” between these two and apply the result to point A: 

zA =15 = xAtanθ − gxA
2

2V1
2 cos2θ

=12 tanθ − (9.81)(12)2

2(30)2 cos2θ
; clean up and rearrange:  

tanθ =1.25 + 0.0654 sec2θ, solve for θ = ≈85.865° Ans. (a) and 55.46° Ans. (b)  

Path (b) is shown in the figure, where the jet just grazes the corner A and goes over the top of 
the roof. Path (a) goes nearly straight up, to z = 45.63 m, then falls down to pt. A.  In both 
cases, the velocity when the jet strikes point A is the same, 24.6 m/s. 
_____________________________________________________________________ 
 
P3.123 For the container of Fig. P3.123 use Bernoulli’s equation to derive a formula for the 
distance X where the free jet leaving horizontally will strike the floor, as a function of h and 
H. For what ratio h/H will X be maximum? Sketch the three trajectories for h/H = 0.25, 0.5, 
and 0.75. 
 
Solution: The velocity out the hole and the time to fall from hole to ground are given by 

  Vo = 2g(H − h) tfall = 2h/g  

Then the distance travelled horizontally is 

X =Votfall = 2 h(H − h) Ans.  
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Fig. P3.123 

 

 
 
Maximum X occurs at h =  H/2, or Xmax =  H. When h = 0.25H or 0.75H, the jet travels out to 
X  = 0.866H. These three trajectories are shown in the sketch on the previous page. 

 

P3.124         Water at 20°C, in the pressurized 

tank of Fig. P3.124, flows out and creates a 

vertical jet as shown.  Assuming steady 

frictionless flow, determine the height H 

to which the jet rises. 

 

Solution:  This is a straightforward Bernoulli problem.  Let the water surface 
be (1), the exit plane be (2), and the top of the vertical jet be (3).  Let z2 = 0 for convenience.   
If we are clever, we can bypass (2) and write Bernoulli directly from (1) to (3): 
 

p1
ρg

+
V1
2

2g
+ z1 =

p3
ρg

+
V3
2

2g
+ z3 , or :

75000
(9.81)(998)

+ 0 − 0.85m = 0 + 0 + H

Solve H = 7.66m + 0.85m = 8.51m Ans.

 

If we took an intermediate step from (1) to (2), we would find  V2
2/2g = 8.51 m, and then going from 

(2) to (3) would convert the velocity head into pure elevation, because V3 = 0. 
 

85 cm 

H ? 
      Air 
75 kPa-gage 

water 

Fig. P3.124 

(1) 

(2) 

(3) 
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P3.125 Bernoulli’s 1738 treatise Hydrodynamica contains many excellent sketches of flow 
patterns. One, however, redrawn here as Fig. P3.125, seems physically misleading. What is 
wrong with the drawing? 

Solution: If friction is neglected and the exit pipe is fully open, then pressure in the closed 
“piezometer” tube would be atmospheric and the fluid would not rise at all in the tube. The 
open jet coming from the hole in the tube would have V ≈ √(2gh) and would rise up to nearly 
the same height as the water in the tank. 

 
Fig. P3.125

 

P3.126  A long fixed tube with a rounded nose, aligned with an oncoming flow, can be 
used to measure velocity.  Measurements are made of the pressure at (1) the front nose and (2) a 
hole in the side of the tube further along, where the pressure nearly equals stream pressure.   
(a) Make a sketch of this device and show how the velocity is calculated.  (b) For a particular sea-
level air flow, the difference between nose pressure and side pressure is 10.3 kPa.  What is the air 
velocity, in km/h? 
 
Solution:  (a) The front nose measures po 
and the side hole measures the stream  
pressure p∞.  With no elevation 
changes, the Bernoulli equation predicts 
 

  
U∞ =

2( po − p∞ )
ρ

Ans.(a)  

 
The device is, of course, called a Pitot-static tube and is in wide use in fluids engineering. 
(b) For sea-level conditions, take ρair  = 1.2255 kg/m3.  
 

                         
   
U∞ =

2( po − p∞ )
ρ

=
2(10342 Pa)

1.2255 kg/m3
=130  m/s =468 km/h Ans.(b)  

 
________________________________________________________________________ 
 
 

U∞ po 

p∞ 
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P3.127 The manometer fluid in Fig. P3.127 is mercury. Estimate the volume flow in the tube if 
the flowing fluid is (a) gasoline and (b) nitrogen, at 20°C and 1 atm. 
 

Solution: For gasoline (a) take ρ = 680.3 kg/m3. For nitrogen (b), R ≈ 297 J/kg ⋅ °C and ρ = p/RT = 
(101350)/[(297)(293)] ≈ 1.165 kg/m3. For mercury, take ρ ≈ 13,575.1 kg/ m3. The pitot tube (2) 
reads stagnation pressure, and the wall hole (1) reads static pressure. Thus Bernoulli’s 
relation becomes, with Δz = 0, 

 

 
 

Fig. P3.127 

p1 +
1
2
ρV1

2 = p2, or V1 = 2(p2 − p1)/ρ  

The pressure difference is found from the manometer reading, for each fluid in turn: 

(a) Gasoline: Δp = (ρHg − ρ)gh = (13575.1− 680.3)(9.81)(2.5 ×10−2 ) ≈ 3162.5 N/m2  

V1 = 2 3162.5( ) /680.3 
1/2
= 3.05 m/s,  Q =V1A1 = (3.05) π

4






 7.5 ×10−2( )2 = 13.5 L / s Ans. (a)  

(b) N2: Δp = (ρHg − ρ)gh = (13575.1−1.165)(9.81)(2.5 ×10−2 ) ≈ 3329 N/m2  

V1 = 2 3329( )/ 1.165] 
1/2
= 75.6 m/s,  Q =V1A1 = 75.6( ) π

4






 7.5 ×10−2( )2 ≈ 334 L / s  Ans. (b)  

________________________________________________________________________ 

P3.128 In Fig. P3.128 the flowing fluid is 
CO2 at 20°C. Neglect losses. If p1 = 170 kPa 
and the manometer fluid is Meriam red oil 
(SG = 0.827), estimate (a) p2 and (b) the 
gas flow rate in m3/h. 

Solution: Estimate the CO2 density as ρ = 
p/RT = (170000)/[189(293)] ≈ 3.07 kg/m3. 
The manometer reading gives the down-
stream pressure: 

 
Fig. P3.128 

p1 − p2 = (ρoil − ρCO2
)gh = [0.827(998)− 3.07](9.81)(0.08) ≈ 645 Pa  

Hence p2 =170,000 − 645 ≈ 169400Pa Ans. (a)  
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Now use Bernoulli to find V2, assuming p1 ≈ stagnation pressure (V1 = 0): 

p1 +
1
2
ρ(0)2 ≈ p2 +

1
2
ρV2

2,  

or: V2 =
2(p1 − p2 )

ρ
=

2(645)
3.07

≈ 20.5 m
s

 

Then Q =V2A2 = (20.5)(π/4)(0.06)2 = 0.058 m3/s ≈ 209 m
3

hr
Ans. (b)  

 

P3.129     The cylindrical water tank in Fig. P3.129 is being 

filled at a volume flow Q1 = 3.785 L/min, while the 

water also drains from a bottom hole of diameter d = 

6 mm.  At time t = 0, h = 0.  Find (a) an expression for 

h(t) and (b) the eventual maximum water depth hmax. 

Assume that Bernoulli’s steady-flow equation is valid. 

 

Solution:  Bernoulli predicts that  V2 ≈ √(2gh). 

Convert Q1 =  6.309E-5 m3/s. A control volume around the tank gives the mass balance: 

dm
dt
|system = 0 =

d
dt
(Ah) − Q1 + A2 2gh , where A = π

4
D2 and A2 =

π
4
d 2  

Rearrange, separate the variables, and integrate: 

dh
Q1 − A2 2gh0

h(t )

∫ =
1
A

dt
0

t

∫  

(a)  The integration is a bit tricky and laborious.  Here is the writer’s result: 

t =
2Q1 A
α2 ln( Q1

Q1 −α h
) − 2A h

α
, where α = A2 2g Ans.(a)  

 

 

 

V2 

Q1 

h 

Fig. P3.129 

diameter  
D = 20 cm 

CV 
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(a)  A graph of h versus t for the particular given data is as follows: 

 
 
(b)  The water level rises fast and then slower and is asymptotic to the value hmax = 0.254 m.  This is 
when the outflow through the hole exactly equals the inflow from the pipe: 

Q1 = A2 2ghmax , or : 6.309E − 5 m
3

s
=
π
4
(0.006m)2 2(9.81)hmax

Solve for hmax = 0.254m Ans.(b)
 

 

P3.130 The air-cushion vehicle in Fig. P3.130 brings in sea-level standard air through a fan 
and discharges it at high velocity through an annular skirt of 3-cm clearance. If the vehicle 
weighs 50 kN, estimate (a) the required airflow rate and (b) the fan power in kW. 
 
Solution: The air inside at section 1 is nearly stagnant (V ≈ 0) and supports the weight and 
also drives the flow out of the interior into the atmosphere: 

 
Fig. P3.130 

 

 

 

Then the power required by the fan is P = QeΔp = (30.6)(1768) ≈ 54000 W Ans. 
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P3.131 A necked-down section in a pipe flow, called a venturi, develops a low throat 
pressure which can aspirate fluid upward from a reservoir, as in Fig. P3.131. Using 
Bernoulli’s equation with no losses, derive an expression for the velocity V1 which is just 
sufficient to bring reservoir fluid into the throat. 

 
Fig. P3.131 

Solution: Water will begin to aspirate into the throat when pa − p1 = ρgh. Hence: 

Volume flow: V1 =V2(D2 /D1)2; Bernoulli (Δz = 0): p1 +
1
2
ρV1

2 ≈ patm +
1
2
ρV2

2  

Solve for pa − p1 =
ρ
2

(α4 −1)V2
2 ≥ ρgh, α =

D2

D1
, or: V2 ≥

2gh
α 4 −1

Ans.  

Similarly, V1, min =α
2V2, min =

2gh
1− (D1 / D2 )4 Ans.  

 

P3.132 Suppose you are designing a 0.9 ×1.8-m  air-hockey table, with 1.6-mm-diameter 
holes spaced every mm in a rectangular pattern (2592 holes total), the required jet speed from 
each hole is 15 m/s. You must select an appropriate blower. Estimate the volumetric flow rate 
(in m3/min) and pressure rise (in Pa) required. Hint: Assume the air is stagnant in the large 
manifold under the table surface, and neglect frictional losses. 

 

 
 
Solution: Assume an air density of about sea-level, 1.21 kg/m3. Apply Bernoulli’s equation 
through any single hole, as in the figure: 

p1 +
ρ
2
V1
2 = pa +

ρ
2
Vjet
2 , or:  

 

Δprequired = p1 − pa =
ρ
2
V jet

2 =
1.21

2
15( )2 = 136.125 Pa  Ans.  
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The total volume flow required is 

Q =VA1−hole(#  of  holes) = 15 m
s








π
4

1.6 ×10−3m( )2(2592 holes)

= 4.7 m
3

min
 Ans.

 

It wasn’t asked, but the power required would be  

P = Q Δp = (0.078 m3/s)(136.125 Pa) = 10.64 Watts.  
 

  
P3.133 The liquid in Fig. P3.133 is kerosine at 20°C. Estimate the flow rate from the tank 
for (a) no losses and (b) pipe losses hf ≈ 4.5V2/(2g). 
 

 
 

Fig. P3.133 
 
Solution: For kerosine let γ = 8044.2 N. Let (1) be the surface and (2) the exit jet: 

p1

γ
+

V1
2

2g
+ z1 =

p2

γ
+

V2
2

2g
+ z2 + hf , with z2 = 0 and V1 ≈ 0,  hf = K

V2
2

2g
 

Solve for
V2

2

2g
1+K( ) = z1 +

p1 − p2

γ
=1.5 +

140 ×103 −101.3×103( )
8044.2

≈ 6.31 m  

We are asked to compute two cases (a) no losses; and (b) substantial losses, K ≈ 4.5: 

(a) K = 0: V2 =
2(9.81)(6.31)

1+ 0






1/2

=11.13 m
s

, Q =11.13π
4

2.5 ×10−2( )2 ≈ 5.46 L
s

Ans. (a)

 

(b) K = 4.5: V2 =
2(9.81)(6.31)

1+ 4.5
= 4.74 m

s
, Q = 4.74 π

4
2.5 ×10−2( )2 ≈ 2.33 L

s
Ans. (b)  

 

P3.134 An open water jet exits from a 
nozzle into sea-level air, as shown, and 
strikes a stagnation tube. If the centerline 
pressure at section (1) is 110 kPa and losses 
are neglected, estimate (a) the mass flow in 
kg/s; and (b) the height H of the fluid in the 
tube. 

 
Fig. P3.134 
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Solution: Writing Bernoulli and continuity between pipe and jet yields jet velocity: 

p1 − pa =
ρ
2
V jet
2 1−

Djet

D1











4










=110000 −101350 = 998

2
V jet
2 1− 4

12







4










,  

solve Vjet = 4.19 m
s

 

 

Then the mass flow is m = ρAjetVjet = 998 π
4

(0.04)2(4.19) = 5.25 kg
s

Ans. (a)  

(b) The water in the stagnation tube will rise above the jet surface by an amount equal to the 
stagnation pressure head of the jet: 

H = Rjet +
V jet

2

2g
= 0.02 m +

(4.19)2

2(9.81)
= 0.02 + 0.89 = 0.91 m Ans. (b)  

 

P3.135 A venturi meter, shown in Fig. P3.135, 
is a carefully designed constriction whose 
pressure difference is a measure of the flow 
rate in a pipe. Using Bernoulli’s equation for 
steady incompressible flow with no losses, 
show that the flow rate Q is related to the 
manometer reading h by 

Q =
A2

1− (D2/D1)
4

2gh(ρM − ρ)
ρ

 

where ρM is the density of the manometer 
fluid. 

 
Fig. P3.135 

Solution: First establish that the manometer reads the pressure difference between 1 and 2: 

 p1 − p2 = (ρM − ρ)gh  (1) 

Then write incompressible Bernoulli’s equation and continuity between (1) and (2): 

(Δz = 0): p1
ρ
+
V1
2

2
≈
p2
ρ
+
V2
2

2
and V2 =V1(D1/D2)

2, Q = A1V1 = A2V2  

Eliminate V2  and (p1 − p2 ) from (1) above: Q =
A2 2gh(ρM − ρ) / ρ

1− (D2 / D1)
4

Ans.  
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P3.136 A wind tunnel draws in sea-level standard air from the room and accelerates it into a 
1-m by 1-m test section. A pressure transducer in the test section wall measures Δp = 45 mm 
water between inside and outside. Estimate (a) the test section velocity in mi/hr; and (b) the 
absolute pressure at the nose of the model. 

 

Solution: (a) First apply Bernoulli from the atmosphere (1) to (2), using the known Δp: 

pa − p2 = 45 mm H2O = 441 Pa; ρa =1.225 kg/m3; p1 +
ρ
2

V1
2 ≈ p2 +

ρ
2

V2
2  

Since V1 ≈ 0 and p1 = pa, we obtain V2 =
2Δp
ρ

=
2(441)
1.225

=
26.8 × 3600

1000
= 96.48 km

hr
Ans. (a)

 
(b) Bernoulli from 1 to 3: both velocities = 0, so pnose = pa ≈ 101350 Pa. Ans. (b) 

 
 
P3.137 In Fig. P3.137 the fluid is gasoline at 20°C at a weight flux of 120 N/s. Assuming no 
losses, estimate the gage pressure at section 1. 
 
Solution: For gasoline, ρ = 680 kg/m3. Compute the velocities from the given flow rate: 

 
 

Fig. P3.137 
 

 

Q =
W
ρg

=
120 N/s

680(9.81)
= 0.018 m3

s
,

V1 =
0.018

π(0.04)2 = 3.58 m
s

; V2 =
0.018

π(0.025)2 = 9.16 m
s

 

 
Now apply Bernoulli between 1 and 2: 

p1
ρ
+
V1
2

2
+ gz1 ≈

p2
ρ
+
V2
2

2
+ gz2, or: p1

ρ
+
(3.58)2

2
+ 0 ≈ 0(gage)

680
+
(9.16)2

2
+ 9.81(12)  
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P3.138 In Fig. P3.138 both fluids are at 20°C. If V1 = 0.5 m/s and losses are neglected, what 
should the manometer reading h m be? 
Solution: By continuity, establish V2: 

V2 =V1(D1/D2 )2 = 0.5(3/1)2 = 4.5 m
s

 

Now apply Bernoulli between 1 and 2 to establish the pressure at section 2: 

p1 +
ρ
2
V1
2 + ρgz1 = p2 +

ρ
2
V2
2 + ρgz2,  

 
Fig. P3.138 

or: p1 + (998/2)(0.5)2 + 0 ≈ 0 + (998/2)(4.5)2 + (998)(9.81)(10), p1 =107.9 kPa  

This is gage pressure. Now the manometer reads gage pressure, so 

p1 − pa =107.9 kPa = (ρmerc − ρwater )gh = (13552 − 998)(9.81)h, solve for h ≈ 87.61 cm Ans.
 

 

P3.139         Extend the siphon analysis of Ex. 3.14 to account for friction in the tube, as 
follows.  Let the friction head loss in the tube be correlated as 5.4(Vtube)2/(2g), which 
approximates turbulent flow in a 2-m-long tube.  Calculate the exit velocity in m/s and the 
volume flow rate in cm3/s.  We repeat the sketch of Ex. 3.14 for convenience. 

  

 

 

 

 

 

z1= 60 cm 

z2 = − 25  cm 

z4 

V2 ? 
Fig. E3.14 

z = 0 

d   =   1 cm 

water 
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Solution:  Write the steady flow energy equation from the water surface (1) to the exit (2): 

p1
ρg

+
V1
2

2g
+ z1 =

p2
ρg

+
V2
2

2g
+ z2 + hf , where hf = 5.4Vtube

2

2g
 

The tube area is constant, hence Vtube  =  V2.  Also,  p1 =  p2 and  V1   ≈ 0.  Thus we obtain 

z1− z2 = 0.6m− (−0.25m) = 0.85m =
V2
2

2g
(1+5.4)

Solve V2 =
2(9.81m / s2 )(0.85m)

1+5.4
= 1.61m

s
Ans.

and Q = V2A2 = (1.61
m
s
)π
4
(0.01m)2 = 0.000167 m

3

s
= 127 cm

3

s
Ans.

 

Tube friction has reduced the flow rate by more than 60%. 
 

P3.140 If losses are neglected in Fig. P3.140, for what water level h will the flow begin to 
form vapor cavities at the throat of the nozzle? 

 
Fig. P3.140 

Solution: Applying Bernoulli from (a) to (2) gives Torricelli’s relation: V2 = √(2gh). Also, 

V1 =V2(D2 /D1)
2 =V2(8/5)

2 = 2.56V2  

Vapor bubbles form when p1 reaches the vapor pressure at 30°C, pvap ≈ 4242 Pa (from Table 
A.5), while ρ ≈ 996 kg/m3 at 30°C (Table A.1). Apply Bernoulli between 1 and 2: 

p1

ρ
+

V1
2

2
+ gz1 ≈

p2

ρ
+

V2
2

2
+ gz2, or: 4242

996
+

(2.56V2 )2

2
+ 0 ≈ 100000

996
+

V 2
2

2
+ 0  

Solve for V2
2 = 34.62 = 2gh, or h = 34.62/ [2(9.81)] ≈ 1.76 m Ans. 
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P3.141 For the 40°C water flow in Fig. P3.141, estimate the volume flow through the pipe, 
assuming no losses; then explain what is wrong with this seemingly innocent question. If the 
actual flow rate is Q =  40 m3/h, compute (a) the head loss in m and (b) the constriction 
diameter D which causes cavitation, assuming that the throat divides the head loss equally and 
that changing the constriction causes no additional losses. 

 
Fig. P3.141 

 
Solution: Apply Bernoulli between 1 and 2: 

p1
γ
+
V1
2

2g
+ z1 ≈

p2
γ
+
V2
2

2g
+ z2, or: 0 + 0 + 25 ≈ 0 + 0 +10, or: 25 = 10 ??  

This is madness, what happened? The answer is that this problem cannot be free of losses. There is 
a 15-m loss as the pipe-exit jet dissipates into the downstream reservoir. Ans. (a) 

(b) Examining analysis (a) shows that the head loss is 15 meters. For water at 40°C, the vapor 
pressure is 7375 Pa (Table A.5), and the density is 992 kg/m3 (Table A.1). Now write 
Bernoulli between (1) and (3), assuming a head loss of 15/2 = 7.5 m: 

p1
ρ
+
V1
2

2
+ gz1 =

p3
ρ
+
V3
2

2
+ gz3 +

g
2
hf,total, where V3 =

Q
A3

=
40/3600
(π/4)D2

=
0.0141
D2

 

Thus 101350
992

+ 0 + 9.81(25) ≈ 7375
992

+
(0.0141/D2 )2

2
+ 0 + (9.81)(7.5)  

  Solve for D4 ≈ 3.75E−7 m4, or D ≈ 0.0248 m ≈ 25 mm Ans.(b)  

This corresponds to V3 ≈ 23 m/s. 
 

P3.142 The 35°C water flow of Fig. P3.142 discharges to sea-level standard atmosphere. 
Neglecting losses, for what nozzle diameter D will cavitation begin to occur? To avoid 
cavitation, should you increase or decrease D from this critical value? 
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Solution: At 35°C the vapor pressure of water is approximately 5600 Pa (Table A.5). Bernoulli 
from the surface to point 3 gives the 

 
 

Fig. P3.142 

Torricelli result V3 = √(2gh) = √[2(9.81)(1.8)] ≈ 5.94 m/s. We can ignore section 2 and write 
Bernoulli from (1) to (3), with p1 = pvap and Δz = 0: 

p1

ρ
+

V1
2

2
≈

p2

ρ
+

V2
2

2
, or: 5600

994
+

V1
2

2
≈

101,325
994

+
V3

2

2
,

but also V1 =V3
D

2.5 ×10−2








2
 

Eliminate V1 and introduce V3 = 5.94 m
s

 to obtain D4 =1.26 ×10−6, D ≈ 3.4 cm Ans.  

To avoid cavitation, we would keep D < 3.4 cm, which will keep p1 > pvapor. 

 

 

 

P3.143    Air, assumed frictionless, flows 

through a tube, exiting to sea-level atmosphere. 

Diameters at 1 and 3 are 5 cm, while D2 = 3 cm. 

What mass flow of air is required to suck water 

up 10 cm into section 2 of Fig. P3.143? 

 
Solution:  For sea-level, take ρair = 1.2255 kg/m3.  Section 2 must be less than atmospheric.  How 
much less?   Determine the pressure change for 10 cm of water: 

  Δp = p3− p2 = ρwater g h = (998kg / m3)(9.81m / s2 )(0.1 m) = 979 Pa  

 
 

1 2 3 

10 cm 

Fig. P3.143 
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This must be the pressure difference between sections 2 and 3.  From Bernoulli’s equation, 

    

p3− p2 =
ρ
2

(V2
2 −V3

2 ) plus continuity : V3=
A2
A3

V2 =
D2

2

D3
2

V2 =
9
25

V2

or : 979 Pa = 1.2255
2

(V2
2 )[1−( 9

25
)2] ; Solve for V2 = 42.8 m

s
, V3 = 15.4 m

s

Finally, mair = ρ A3V3 = (1.2255 kg
m3

) π
4

(0.05m)2(15.4 m
s

) = 0.037 kg
s

Ans.

 

 

P3.144 In Fig. P3.144 the piston drives water at 20°C. Neglecting losses, estimate the exit 
velocity V2 m/s. If D2 is further constricted, what is the maximum possible value of V2? 
Solution: Find p1 from a freebody of the piston: 

 
 

Fig. P3.144 
 

∑Fx = F + paA1 − p1A1, or: p1 − pa =
45 N

(π/4)(0.2)2 ≈ 1432.4 N/m2  

Now apply continuity and Bernoulli from 1 to 2: 

V1A1 =V2A2, or V1 =
1
4
V2;

p1
ρ
+
V1
2

2
≈
pa
ρ
+
V2
2

2
 

Introduce p1 − pa  and substitute for V1 to obtain V2
2 =

2(1432.4)
998(1−1/16)

,

V2 = 1.75 m
s

Ans.
 

If we reduce section 2 to a pinhole, V2 will drop off slowly until V1 vanishes: 

Severely constricted section 2: V2 =
2(1432.4)
998(1− 0)

≈ 1.69 m
s

Ans. 
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P3.145     For the sluice gate flow of Example 3.10, use Bernoulli’s equation, along the surface, to 
estimate the flow rate Q as a function of the two water depths.  Assume constant width b. 

Solution:  Along surface 1, down the inside of the gate, and along surface 2 is a streamline of the 
flow.  Therefore Bernoulli applies if we neglect friction, and we can use continuity also: 

  

Continuity : Q1=V1 h1 b = Q2 =V2 h2 b , or : V1=V2 (h2 / h1)

Bernoulli :
p1
ρ
+

V1
2

2g
+ h1 =

p2
ρ
+

V2
2

2g
+ h2

But p1= p2 = patmosphere , thus V2
2 −V1

2 = 2g(h1 − h2 )

 

Eliminate V1 from continuity and solve for V2, hence solve for Q:      

  

V2 =
2g(h1 − h2 )

1−(h2 / h1)2
; Q = bh2

2g(h1 − h2 )

1−(h2 / h1)2
= bh2 h1

2g
h1 + h2

Ans  

 

P3.146 In the spillway flow of Fig. P3.146, the flow is assumed uniform and hydrostatic at 
sections 1 and 2. If losses are neglected, compute (a) V2 and (b) the force per unit width of 
the water on the spillway. 

Solution: For mass conservation, 

V2 =V1h1/h2 =
5.0
0.7
V1 = 7.14V1  

 
Fig. P3.146 

 (a) Now apply Bernoulli from 1 to 2: 

p1
γ
+
V1
2

2g
+ h1 ≈

p2
γ
+
V2
2

2g
+ h2; or: 0 +

V1
2

2g
+ 5.0 ≈ 0 + (7.14V1)

2

2g
+ 0.7  

Solve for V1
2 =

2(9.81)(5.0 − 0.7)
[(7.14)2 −1]

, or V1 = 1.30 m
s

, V2 = 7.14V1 = 9.28 m
s

Ans. (a)  

(b) To find the force on the spillway (F ←), put a CV around sections 1 and 2 to obtain 

 

∑Fx = −F + γ
2

h1
2 −

γ
2

h2
2 = m(V2 −V1), or, using the given data,  

F = 1
2

(9790)[(5.0)2 − (0.7)2 ]− 998[(1.30)(5.0)](9.28 −1.30) ≈ 68300 N
m

Ans. (b)  
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P3.147 For the water-channel flow of.Fig. P3.147, h1 = 1.5 m, H = 4 m, and V1 = 3 m/s. 
Neglecting losses and assuming uniform flow at sections 1 and 2, find the downstream depth h2, 
and show that two realistic solutions are possible. 

Solution: Combine continuity and Bernoulli between 1 and 2: 

 
Fig. P3.147 

 

 

 

_____________________________________________________________________ 

P3.148 For the water channel flow of Fig. P3.148, h1 = 15 cm, H = 70 cm, and V1 =  
5 m/s. Neglecting losses and assuming uniform flow at sections 1 and 2, find the downstream 
depth h2. Show that two realistic solutions are possible. 

Solution: The analysis is quite similar to Prob. 3.185 - continuity + Bernoulli: 

 
Fig. P3.148 

V2 =V1
h1
h2

=
5(0.15)
h2

; V1
2

2g
+ h1 =

V2
2

2g
+ h2 +H =

V1
2

2(9.81)
+ 0.15 = (0.75/h2)

2

2(9.81)
+ h2 + 0.7  

Combine into a cubic equation: h2
3 − 0.724 h2

2 + 0.0287 = 0 . The three roots are: 

h2 = −0.178 m (impossible); h2 = +0.658 m (subcritical);
h2 = +0.245 m (supercritical) Ans.
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P3.149 A cylindrical tank of diameter D 
contains liquid to an initial height ho. At 
time t = 0 a small stopper of diameter d is 
removed from the bottom. Using Bernoulli’s 
equation with no losses, derive (a) a 
differential equation for the free-surface 
height h(t) during draining and (b) an 
expression for the time to to drain the 
entire tank. 
Solution: Write continuity and the unsteady Bernoulli relation from 1 to 2: 

 

The integral term  is very small and will be neglected, and p1 = p2.. Then 

, where α = (D/d)4; but also , separate and integrate: 

 

(b) the tank is empty when [] = 0 in (a) above, or to =  [2(α  −  1)g/ho]1/2. Ans. (b) 
 

P3.150 The large tank of incompressible 
liquid in Fig. P3.150 is at rest when, at t = 0, 
the valve is opened to the atmosphere. 
Assuming h ≈ constant (negligible 
velocities and accelerations in the tank), 
use the unsteady frictionless Bernoulli 
equation to derive and solve a differential 
equation for V(t) in the pipe.  

Fig. P3.150 
Solution: Write unsteady Bernoulli from 1 to 2: 

 

The integral approximately equals  so the diff. eqn. is  

This first-order ordinary differential equation has an exact solution for V = 0 at t = 0: 
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P3.151     A 6-cm-diameter free water jet, in sea-level air at 101,350 Pa, strikes perpendicular to a 
flat wall.  If the water stagnation pressure at the wall is 213,600 Pa, estimate the force required to 
support the wall against jet momentum. 
 
Solution:   For standard conditions, take ρwater = 998 kg/m3.  The moving free jet must be at sea-
level pressure; hence the stagnation pressure value allows us to compute the jet velocity: 
 

 

From many other momentum problems of this jet-striking-wall type, we found that 
 

 

_______________________________________________________________________ 
 
P3.152 The incompressible-flow form of Bernoulli’s relation, Eq. (3.54), is accurate only for 
Mach numbers less than about 0.3. At higher speeds, variable density must be accounted for. 
The most common assumption for compressible fluids is isentropic flow of an ideal gas, or p = 
Cρk, where k = cp/cv. Substitute this relation into Eq. (3.52), integrate, and eliminate the constant 
C. Compare your compressible result with Eq. (3.54) and comment. 

Solution: We are to integrate the differential Bernoulli relation with variable density: 

 

Substitute this into the Bernoulli relation: 

 

 

The first integral equals kCρk–1/(k − 1) = kp/[ρ(k − 1)] from the isentropic relation. Thus the 
compressible isentropic Bernoulli relation can be written in the form 

 

It looks quite different from the incompressible relation, which only has “p/ρ.” It becomes 
more clear when we make the ideal-gas substitution p/ρ = RT and cp = kR/(k − 1). Then we 
obtain the equivalent of the adiabatic, no-shaft-work energy equation: 
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P3.153 The pump in Fig. P3.153 draws gasoline at 20°C from a reservoir. Pumps are in big 
trouble if the liquid vaporizes (cavitates) before it enters the pump. 
(a) Neglecting losses and assuming a flow rate of 250 L/min, find the limitations on (x, y, z) for 
avoiding cavitation. (b) If pipe-friction losses are included, what additional limitations might be 
important? 

Solution: (a) From Table A.3, ρ = 680 kg/ m3 and pv = 5.51E+4. 

 

 

  

Fig. P3.153 

Thus make length z appreciably less than 6.73m (25% less), or z < 5 m. Ans. (a)  

(b) Total pipe length (x + y + z) restricted by friction losses. Ans. (b) 
 

P3.154 For the system of Prob. 3.153, let the pump exhaust gasoline at 240 L/min to the 
atmosphere through a 3-cm-diameter opening, with no cavitation, when x = 3 m, y =  
2.5 m, and z = 2 m. If the friction head loss is hloss ≈ 3.7(V2/2g), where V is the average 
velocity in the pipe, estimate the horsepower required to be delivered by the pump. 

Solution: Since power is a function of hpump, Bernoulli is required. Thus calculate the velocity, 

V =
Q
A
=

240 L
min

⋅
1

60
⋅
min

s
⋅10−3 ⋅

m3

L










π
4

(0.032 )
= 5.8 m/s  

 
 
 
 

x 
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The pump head may then be found, 

 

 

 

 
 

P3.155      By neglecting friction, (a) use the 

Bernoulli equation between surfaces 1 and 2 

to estimate the volume flow through the orifice, 

whose diameter is 3 cm.  (b) Why is the result 

to part (a) absurd?  (c)  Suggest a way to 

resolve this paradox and find the true flow rate. 

 

Solution:  (a) The incompressible Bernoulli equation between surfaces 1 and 2 yields 

          

 (b)  The absurd result arises because the flow is not frictionless.  The jet of water passing 
through the orifice loses all of its kinetic energy by viscous dissipation in the right-side tank.  
(c) As we shall see in Chap. 6, we add an orifice-exit head loss equal to the jet kinetic energy: 

 

________________________________________________________________________ 

2 
4 m 

2.5 m 

1 m 

water 

pa 

Fig. P3.155 
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P3.156 The horizontal lawn sprinkler in Fig. P3.156 has a water flow rate of 
15 L/min introduced vertically through the center. Estimate (a) the retarding torque required 
to keep the arms from rotating and (b) the rotation rate (r/min) if there is no re- 
tarding torque. 

 
Fig. P3.156 

Solution: The flow rate is 15 L/min = 2.5 ×10−4m3 /s , and ρ = 998 kg/m3. The velocity 
issuing from each arm is Vo = 2.5 ×10−4 /2( ) / π /4( ) 6 ×10−3( )2



 ≈ 4.42 m/s.  Then: 

 

To = ρQRVo = (998)(2.5 ×10−4 )(0.15)(4.42) ≈ 0.165 N - m Ans. (a)  

(b) If To = 0, then ωno friction =Vo /R =
4.42 m/s
0.15 m

= 29.5 rad
s
≈ 281.7 rev

min
Ans. (b)  

 

P3.157 In Prob. 3.65 find the torque caused around flange 1 if the center point of exit 2 is 1.2 
m directly below the flange center. 

 
Fig. P3.65 

Solution: The CV encloses the elbow and cuts through flange (1). Recall from Prob. 3.65 
that D1 = 10 cm, D2 = 3 cm, weight flow = 150 N/s, whence V1 = 1.95 m/s and V2 = 21.7 m/s. 
Let “O” be in the center of flange (1). Then rO2 = −1.2j and rO1 = 0. 
 
The pressure at (1) passes through O, thus causes no torque. The moment relation is 
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P3.158 The wye joint in Fig. P3.158 
splits the pipe flow into equal amounts 
Q/2, which exit, as shown, a distance Ro 
from the axis. Neglect gravity and friction. 
Find an expression for the torque T 
about the x axis required to keep the 
system rotating at angular velocity Ω.  

Fig. P3.158 

Solution: Let the CV enclose the junction, cutting through the inlet pipe and thus exposing 
the required torque T. If y is “up” in the figure, the absolute exit velocities are 

 

where Vo = Q/(2A) is the exit velocity relative to the pipe walls. Then the moments about the 
x axis are related to angular momentum fluxes by 

∑Maxis = Ti = (ρQ/2)(Ro j)×Vupper + (ρQ/2)(−Ro j)×Vlower − ρQ(rinletVinlet )

=
ρQ
2

Ro
2Ω i −RoVoΩk( ) +

ρQ
2

Ro
2Ω i+RoVoΩ k( ) − ρQ(0)

 

Each arm contributes to the torque via relative velocity (ΩRo). Other terms with Vo cancel. 

 
Final torque result: T = ρQRo

2Ω = mRo
2Ω Ans.  

 
 
P3.159  Modify Ex. 3.19 so that the arm 
starts up from rest and spins up to its final 
rotation speed. The moment of inertia of the 
arm about O is Io. Neglect air drag. Find 
dω/dt and integrate to determine ω  (t), 
assuming ω = 0 at t = 0. 

Solution: The CV is shown. Apply clockwise 
moments: 

 

or: − To − Io
dω
dt

= ρQ(R2ω −RVo),  

 
Fig. 3.16 View from above of a single arm of a 

rotating lawn sprinkler. 

 

Integrate this first-order linear differential equation, with ω = 0 at t = 0. The result is: 

ω =
Vo
R
−

To
ρQR2









 1− e−ρQR

2t / Io



 Ans.  
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P3.160 The 3-arm lawn sprinkler of  
Fig. P3.160 receives 20°C water through the 
center at 2.7 m3/hr. If collar friction is 
neglected, what is the steady rotation rate in 
rev/min for (a) θ = 0°; (b) θ = 40°? 

Solution: The velocity exiting each arm is 

Vo =
Q/3

(π/4)d2 =
2.7/ [(3600)(3)]
(π/4)(0.007)2 = 6.50 m

s
 

 
Fig. P3.160 

With negligible air drag and bearing friction, 
the steady rotation rate (Example 3.15) is 

ωfinal =
Vocosθ

R
(a) θ = 0°: ω =

(6.50)cos0°
0.15 m

= 43.3 rad
s
= 414 rev

min
Ans. (a)  

(b)θ = 40° : ω =ωocosθ = (414)cos 40° = 317 rev
min

Ans. (b)  

 

P3.161 Water at 20°C flows at 114 L/min 
through the 2-cm-diameter double pipe bend 
of Fig. P3.161. The pressures are p1 = 207 
kPa and p2 = 165 kPa. Compute the torque T 
at point B necessary to keep the pipe from 
rotating. 

Solution: This is similar to Example 3.13, of 
the text. The volume flow Q = 114 L/min = 1.9 
×10−3 m3/s, and ρ = 998 kg/m3. Thus the 
mass flow ρQ = 1.9 kg/s. The velocity in the 
pipe is 

 
Fig. P3.161 

V1 =V2 =Q/A =
1.9 ×10−3

(π/4)(2 ×10−2 )2 = 6.05 m
s

 

If we take torques about point B, then the distance “h1,” from p. 143, = 0, and h2 = 0.9 m. 
The final torque at point B, from “Ans. (a)” on p. 143 of the text, is 

 

TB = h2 p2A2 + mV2( ) = 0.9 m( ) 165000( ) π
4

2 ×10−2( )2 + 1.9( ) 6.05( )





≈ 57 N ⋅m Ans.  
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P3.162 The centrifugal pump of Fig. P3.162 
has a flow rate Q and exits the impeller at an 
angle θ2 relative to the blades, as shown. The 
fluid enters axially at section 1. Assuming 
incompressible flow at shaft angular velocity 
ω, derive a formula for the power P required to 
drive the impeller. 

Solution: Relative to the blade, the fluid 
exits at velocity Vrel,2 tangent to the blade, as 
shown in Fig. P3.123. But the Euler turbine 
formula, Ans. (a) from Example 3.14 of the 
text, 

Torque T = ρQ(r2Vt2 − r1Vt1)
≈ ρQr2Vt2  (assuming Vt1 ≈ 0)

 

 
Fig. P3.162 

 

involves the absolute fluid velocity tangential to the blade circle (see Fig. 3.13). To derive 
this velocity we need the “velocity diagram” shown above, where absolute exit velocity 
V2 is found by adding blade tip rotation speed ω r 2 to Vrel,2. With trigonometry,  

Vt2 = r2ω −Vn2 cotθ2, where Vn2 =Q/Aexit =
Q

2πr2b2
is the normal velocity  

With torque T known, the power required is P = Tω. The final formula is: 

P = ρQr2ω r2ω −
Q

2πr2b2









cotθ2









 Ans.  

 

P3.163 A simple turbomachine is con-structed from a disk with two internal ducts 
which exit tangentially through square holes, as in the figure. Water at 20°C enters the 
disk at the center, as shown. The disk must drive, at 250 rev/min, a small device whose 
retarding torque is 1.5 N⋅m. What is the proper mass flow of water, in kg/s? 
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Solution: This problem is a disguised version of the lawn-sprinkler arm in Example 3.15. For 
that problem, the steady rotating speed, with retarding torque To, was 

ω =
Vo
R
−

To
ρQR2 , where Vo is the exit  velocity and  R is the arm radius.  

Enter the given data, noting that Q = 2Vo(ΔLexit)2 is the total volume flow from the two 
arms: 

ω = 250 2π
60






  rad

s
=

Vo
0.16 m

−
1.5 N ⋅m

998(2Vo )(0.02 m)2(0.16 m)2 , solve Vo = 6.11 m
s

 

 
The required mass flow is thus, 

 

m = ρQ = 998 kg
m3







 2 6.11 m

s
















(0.02 m)2 = 2.44 kg

s
Ans.  

 
 
P3.164 Reverse the flow in Fig. P3.162, so that the system operates as a radial-inflow 
turbine. Assuming that the outflow into section 1 has no tangential velocity, derive an 
expression for the power P extracted by the turbine. 

 
 

Solution: The Euler turbine formula, “Ans. (a)” from Example 3.14 of the text, is valid in 
reverse, that is, for a turbine with inflow at section 2 and outflow at section 1. The torque 
developed is 

To = ρQ(r2Vt2 − r1Vt1) ≈ ρQr2Vt2 if Vt1 ≈ 0  

The velocity diagram is reversed, as shown in the figure. The fluid enters the turbine at 
angle θ2, which can only be ensured by a guide vane set at that angle. The absolute 
tangential velocity component is directly related to inlet normal velocity, giving the final 
result 

Vt2 =Vn2 cotθ2, Vn2 =
Q

2πr2b2
,

thus P =ωTo = ρQωr2
Q

2πr2b2









cotθ2 Ans.
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P3.165 Revisit the turbine cascade system 
of Prob. 3.83, and derive a formula for the 
power P delivered, using the angular-
momentum theorem of Eq. (3.59). 

Solution: To use the angular momentum 
theorem, we need the inlet and outlet velocity 
diagrams, as in the figure. The Euler turbine 
formula becomes 

 

To = ρQ(r1Vt1 − r2Vt2 ) ≈ ρQR(Vt1 −Vt2)  

since the blades are at nearly constant radius R. From the velocity diagrams, we find 

Vt1 = u +Vn1 cotα1; Vt2 = u −Vn2 cotα2 , where Vn1 =Vn2 =V1 cosβ1  

The normal velocities are equal by virtue of mass conservation across the blades. Finally, 

P = ρQωR(Vt1 −Vt2 ) = ρQuVn(cotα1 + cotα2 ) Ans.  
 

P3.166 A centrifugal pump delivers 15 m3/min of water at 20°C with a shaft rotating at 1750 
rpm. Neglect losses. If r1 =15 cm, r2 = 36 cm, b1 = b2 = 4.5 cm, Vt1 = 3 m/s, and Vt2 = 33 m/s, 
compute the absolute velocities (a) V1 and (b) V2, and (c) the ideal horsepower required. 

Solution: First convert 15 m3/min = 0.25 m3/s and 1750 rpm = 183 rad/s. For water, take ρ 
= 998 kg/m3. The normal velocities are determined from mass conservation: 

Vn1 =
Q

2πr1b1
=

0.25
2π(0.15)(0.045)

= 5.89 m
s

; Vn2 =
Q

2πr2b2
= 2.46 m

s
 

Then the desired absolute velocities are simply the resultants of Vt and Vn: 

V1 = 3( )2 + 5.89( )2




1/2
= 6.61 m

s
V2 = 33( )2 + 2.46( )2




1/2
= 33.1 m

s
Ans. (a, b)  

The ideal power required is given by Euler’s formula: 

P = ρQω r2Vt2 − r1Vt1( ) = 998( ) 0.25( ) 183( ) 0.36( ) 33.1( ) − 0.15( ) 3( ) 

= 523,520.4 W ≈ 702 hp Ans. (c)
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P3.167 The pipe bend of Fig. P3.167 has 
D1 = 27 cm and D2 = 13 cm. When water at 
20°C flows through the pipe at 15.12 m3/ 
min, p1 = 194 kPa (gage). Compute the 
torque required at point B to hold the bend 
stationary. 
Solution: First convert Q = 15.12 m3/ min  
= 0.252 m3/s. We need the exit velocity:  

Fig. P3.167 

V2 =Q/A2 =
0.252

(π/4)(0.13)2 =19.0 m
s

Meanwhile, V1 =Q/A1 = 4.4 m
s

 

We don’t really need V1, because it passes through B and has no angular momentum. The 
angular momentum theorem is then applied to point B: 

 
∑MB = TB + r1 × p1A1j+ r2 × p2A2(−i) = m(r2 × V2 − r1 × V1)  

But r1 and p2 are zero, 

 
hence TB = m(r2 × V2 ) = ρQ[(0.5i+ 0.5 j) × (19.0i)]  

Thus, finally, TB = (998)(0.252)(0.5)(19.0)(−k) ≈ −2400 k N · m (clockwise) Ans. 
 

P3.168 Extend Prob. 3.51 to the problem of computing the center of pressure L of the 
normal face Fn, as in Fig. P3.168. (At the center of pressure, no moments are required to hold 
the plate at rest.) Neglect friction. Express your result in terms of the sheet thickness h1 and 
the angle θ between the plate and the oncoming jet 1. 

 
Fig. P3.168 

Solution: Recall that in Prob. 3.51 of this Manual, we found h2 = (h1/2)(1 + cosθ) and that 
h3 = (h1/2)(1 − cosθ), where θ  is the angle between the plate and the horizontal. . The force 
on the plate was Fn =  ρQVsinθ. Take clockwise moments about O, where the jet strikes the 
plate, and use the angular momentum theorem: 

 

∑Mo = −FnL = m2 |r2O × V2|z+ m3|r3O × V3|z− m1|r1O × V1|z
= ρVh2(h2V/2)+ ρVh3(−h3V/2)− 0 = (1/2)ρV

2 h2
2 − h3

2( )
 

Thus L = −
(1/2)ρV2 h2

2 − h3
2( )

ρV2h1sinθ
= −

h2
2 − h3

2( )
2h1sinθ

= −
1
2

h1 cotθ Ans.  

The latter result follows from the (h1, h2, h3) relations in 3.51. The C.P. is below point O. 
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P3.169 The waterwheel in Fig. P3.169 is being driven at 200 r/min by a 46-m/s jet of water 
at 20°C. The jet diameter is 6.5 cm. Assuming no losses, what is the horse-power developed 
by the wheel? For what speed Ω r/min will the horsepower developed be a maximum? Assume 
that there are many buckets on the waterwheel. 

Solution: First convert Ω = 200 rpm = 20.9 rad/s. The bucket velocity = Vb =  
ΩR = (20.9)(1.2) = 25.1  m/s. From Prob. 3.56 of this Manual, if there are many buckets, the 
entire (absolute) jet mass flow does the work: 

 
Fig. P3.169 

 

P = m jetVb(Vjet −Vb )(1− cos165°) = ρAjetVjetVb (Vjet −Vb )(1.966)

= 998( ) π
4

0.065( )2 46( ) 25.1( ) 46 − 25.1( ) 1.966( )

=157,111.7 W ≈ 210 hp Ans.

 

Prob. 3.56: Max. power is for Vb = Vjet/2 = 23 m/s, or Ω = 18.75 rad/s = 179 rpm Ans. 

 

P3.170 A rotating dishwasher arm delivers at 60°C to six nozzles, as in Fig. P3.170. The 
total flow rate is 12 L/min. Each nozzle has a diameter of 0.5 cm. If the nozzle flows are 
equal and friction is neglected, estimate the steady rotation rate of the arm, in r/min. 

 
Fig. P3.170 

Solution: First we need the mass flow and velocity from each hole “i,” i = 1 to 6: 

 

Vi =
Qi

Ai
=

12 ×10−3 60
π
4

0.005( )2
≈ 1.7 m

s
mi =

ρQ
6

= 998 12 ×10−3 60
6









 = 0.0333 kg

s
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Recall Example 3.15 from the text. For each hole, we need the absolute velocity, Vi − Ωri. The 
angular momentum theorem is then applied to moments about point O: 

  ∑MO = TO =∑ mi(riO × Vi, abs )− minVin =∑ miri(Vi cos40°−Ωri )  

All the velocities and mass flows from each hole are equal. Then, if TO = 0 (no friction), 

 

Ω =
∑ miriVi cos 40°

∑ miri
2 =Vi cos40° ∑ri

∑ri
2 = (1.7)(0.766) 1.68

0.538
= 4.07 rad

s
= 38.8 rpm Ans.  

 

P3.171 A liquid of density ρ flows through a 90° bend as in Fig. P3.171 and issues 
vertically from a uniformly porous section of length L. Neglecting weight, find a result for 
the support torque M required at point O. 

 
Fig. P3.171 

Solution: Mass conservation requires 

 
Q = Vw (πd)dx = Vwπ dL, or: dQ

dx
= π d Vw

0

L

∫  

Then the angular momentum theorem applied to moments about point O yields 

   

∑MO = TO = (rO × V)d mout = k (R + x)Vwρπ d Vw dx
0

L

∫
CS
∫

=
k
2
ρπ d Vw

2 [(R + x)2 − R2]|
0

L

 

Substitute Vwπ d L = Q and clean up to obtain 
 
TO = ρQVw R +

L
2







 k  Ans. 
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P3.172  Using the information given in P3.116, calculate the moment at the nozzle’s base. 

Solution: Consider angular momentum equation 

   
∑M0 =

∂
∂t

(r ×

V)ρdV

CV∫ 
 + (r ×


V)ρ(


V ⋅
n)dA

CS∫  

Under steady flow condition, we have 

   
∑M0 = (r ×


V)ρ(


V ⋅
n)dA

CS∫  

Since water flows through the nozzle’s base, there is no moment from flow in the control 
volume (nozzle). 

   ∑M0 = (r ×

V)ρQ  

   ∑M0 = −ρQVnozzle (1 sinφ sinθ  

i + 1 sinφ cosθ  


j)  

   

Q =
πd 2

d
Vnozzle

                                 ∴   ∑M0 = −
πρd 2

4
V2

nozzle (1 sinφ sinθ  

i + 1 sinφ cosθ  


j)

 

 

P3.173 Given a steady isothermal flow  
of water at 20°C through the device in  
Fig. P3.173. Heat-transfer, gravity, and 
temperature effects are negligible. Known 
data are D1 = 9 cm, Q1 = 220 m3/h, p1 = 150 
kPa, D2 = 7 cm, Q2 = 100 m3/h, p2 = 225 
kPa, D3 = 4 cm, and p3 = 265 kPa. Compute 
the rate of shaft work done for this device 
and its direction. 

 
Fig. P3.173 

Solution: For continuity, Q3 = Q1 – Q2 = 120 m3/hr. Establish the velocities at each port: 

V1 =
Q1

A1
=

220/3600
π(0.045)2 = 9.61 m

s
; V2 =

100/3600
π(0.035)2 = 7.22 m

s
; V3 =

120/3600
π(0.02)2 = 26.5 m

s
 

With gravity and heat transfer and internal energy neglected, the energy equation becomes 

 

Q − Ws − Wv = m3
p3
ρ3

+
V3
2

2








+ m2

p2
ρ2

+
V2
2

2








− m1

p1
ρ1
+
V1
2

2








,  
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or: − Ws/ρ =
100
3600

225000
998

+
(7.22)2

2








+

120
3600

265000
998

+
(26.5)2

2










+
220
3600

150000
998

+
(9.61)2

2










 

Solve for the shaft work:  Ans. 
(negative denotes work done on the fluid) 

 

P3.174 A power plant on a river, as in Fig. 
P3.174, must eliminate 55 MW of waste 
heat to the river. The river conditions 
upstream are Q1 = 2.5 m3/s and T1 = 18°C. 
The river is 45 m wide and 2.7 m deep. If 
heat losses to the atmosphere and ground 
are negligible, estimate the downstream 
river conditions (Q0, T0). 

 
Fig. P3.174 

Solution: For water, take cp ≈ 4280 J/kg · °C. For an overall CV enclosing the entire 
sketch, 

 

 

The power plant flow is “internal” to the CV, hence  
 

P3.175 For the conditions of Prob. 3.174, if the power plant is to heat the nearby river water 
by no more than 12°C, what should be the minimum flow rate Q, in m3/s, through the plant 
heat exchanger? How will the value of Q affect the downstream conditions  
(Qo, To)? 

Solution: Now let the CV only enclose the power plant, so that the flow going through the 
plant shows as an inlet and an outlet. The CV energy equation, with no work, gives 

 

 

It’s a lot of flow, but if the river water mixes well, the downstream flow is still the same. 
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P3.176 Multnomah Falls in the Columbia River Gorge has a sheer drop of 165 m. Use the 
steady flow energy equation to estimate the water temperature rise, in °C, resulting. 

Solution: For water, convert cp = 4200 J/(kg·K). Use the steady flow energy equation in the 
form of Eq. (3.70), with “1” upstream at the top of the falls: 

  
h1 +

1
2

V1
2 + gz1 =h2 +

1
2

V2
2 + gz2 − q  

Assume adiabatic flow, q = 0 (although evaporation might be important), and neglect the 
kinetic energies, which are much smaller than the potential energy change. Solve for 

   
Δh = cpΔT ≈ g(z1 − z2 ), or: ΔT =

9.81(165)
4200

≈ 0.39°C Ans.  

 

P3.177 When the pump in Fig. P3.177 draws 220 m3/h of water at 20°C from the reservoir, 
the total friction head loss is 5 m. The flow discharges through a nozzle to the atmosphere 
Estimate the pump power in kW delivered to the water. 

Solution: Let “1” be at the reservoir surface and “2” be at the nozzle exit, as shown. We need to 
know the exit velocity: 

 

Fig. P3.177 

V2 =Q/A2 =
220/3600
π(0.025)2 = 31.12 m

s
, while V1 ≈ 0 (reservoir surface)  

Now apply the steady flow energy equation from (1) to (2): 

p1
ρg

+
V1
2

2g
+ z1 =

p2
ρg

+
V2
2

2g
+ z2 + hf − hp,  

or: 0 + 0 + 0 = 0 + (31.12)2/ [2(9.81)]+ 2 + 5 − hp, solve for hp ≈ 56.4 m.  

The pump power P = ρgQhp = (998)(9.81)(220/3600)(56.4) 

= 33700 W = 33.7 kW Ans. 
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P3.178     A steam turbine operates steadily under the following conditions.  At the inlet, p = 2.5 
MPa, T  = 450°C, and V = 40 m/s.  At the outlet, p = 22 kPa, T  = 70°C, and V = 225 m/s.  (a) If we 
neglect elevation changes and heat transfer, how much work is delivered to the turbine blades, in 
kJ/kg?  (b) If the mass flow is 10 kg/s, how much total power is delivered?  (c) Is the steam wet as it 
leaves the exit? 
 
Solution:   This problem is made to order for the general steady-flow energy equation (3.70). 

  
h1 +

1

2
V1

2 + gz1 = h2 +
1

2
V2

2 + gz2 − q + ws + wv  

The viscous work wv is zero because the control volume has all no-slip surfaces.  Look up the two 
enthalpies of steam, in the Steam Tables or with EES: 

             At  2.5 MPa and 450°C,    h1   =   3351  kJ/kg  (or  3,351,000  J/kg  or m2/s2) 
             At  22  kPa and 70°C,    h2   =   2628  kJ/kg   (or  2,628,000  J/kg  or m2/s2) 

The energy equation thus becomes 

   

3,351,000 + (1 / 2)(40m / s)2 + 0 = 2,628,000 + (1 / 2)(225m / s)2 − 0 + ws + 0

Δh + Δ(KE) = 723,100 − 24,500 = 698,600 J / kg = + 698.6 kJ / kg Ans.(a)
 

 
(b)   For the given mass flow of 10 kg/s of steam, the overall power extracted is 

                   Power     =   (10 kg/s)(698.6 kJ/kg)  =  6986 kJ/s     ≈     7.0   MW         Ans.(b) 

(c) For the exit pressure of 22 kPa, EES states that the saturation temperature of steam is 62°C, 
less than the exit temperature of 70°C.  The exit is just barely into the superheat region.  Ans.(c) 
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P3.179 Consider a turbine extracting energy 
from a penstock in a dam, as in the figure. For 
turbulent flow (Chap. 6) the friction head loss 
is hf = CQ2, where the constant C depends 
upon penstock dimensions and water physical 
properties. Show that, for a given penstock and 
river flow Q, the maximum turbine power 
possible is Pmax = 2ρgHQ/3 and occurs when 
Q = (H/3C)1/2. 

 

Solution: Write the steady flow energy equation from point 1 on the upper surface to point 
2 on the lower surface: 

 

But p1 = p2 = patm and V1 ≈ V2 ≈ 0. Thus the turbine head is given by 

 

 

Differentiate and set equal to zero for max power and appropriate flow rate: 

 

 

 

P3.180 The long pipe in Fig. 3.180 is filled 
with water at 20°C. When valve A is closed, 
p1 − p2 = 75 kPa. When the valve is open and 
water flows at 500 m3/h, p1 − p2 = 160 kPa. 
What is the friction head loss between 1 and 
2, in m, for the flowing condition? 

 
Fig. P3.180 

Solution: With the valve closed, there is no velocity or friction loss: 

 

When the valve is open, the velocity is the same at (1) and (2), thus “d” is not needed: 

 

 

Fig. P3.179 
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P3.181 A 90-cm-diameter pipeline carries oil 
(SG = 0.89) at 1 million barrels per day 
(bbl/day) (1 bbl = 159 L). The friction head loss 
is 13 m/1000 m of pipe. It is planned to place 
pumping stations every 16 km along the pipe. 
Estimate the horsepower which must be 
delivered to the oil by each pump. 

 

 

Solution: Since ΔV and Δz are zero, the energy equation reduces to 

hf =
Δp
ρg

, and hf = 0.013 m-loss
m-pipe

(16 km) ≈ 208 m  

Convert the flow rate from 1E6 bbl/day to 159000 m3/day to 1.84 m3/s. Then the power is 

 P =QΔp = γQhf = 890( ) 9.81( ) 1.84( ) 208( ) = 3.34 ×106W ≈ 4479.2 hp Ans.  

 

P3.182 The pump-turbine system in  
Fig. P3.182 draws water from the upper 
reservoir in the daytime to produce power for 
a city. At night, it pumps water from lower to 
upper reservoirs to restore the situation. For a 
design flow rate of 57 m3/ min in either 
direction, the friction head loss is 5.2 m. 
Estimate the power in kW  
(a) extracted by the turbine and (b) delivered by 
the pump. 

 
Fig. P3.182 

 
Solution: (a) With the turbine, “1” is upstream: 

 

or: 0 + 0 + 46 = 0 + 0 + 8 + 5.2 + ht  

Solve for ht = 32.8 m. Convert Q = 57 m3/min = 0.95 m3/s. Then the turbine power is 

 P = γQhturb = 998( ) 9.81( ) 0.95( ) 32.8( ) = 3.05 ×105 W ≈ 409 hp Ans. (a)  

(b) For pump operation, point “2” is upstream: 

 

or: 0 + 0 + 8 = 0 + 0 + 46 + 5.2 − hp  

Solve for hp ≈ 43.2 m  
The pump power is Ppump = γQhp = (998)(9.81)(0.95)(43.2)

= 4.02 ×105 W ≈ 539 hp Ans. (b)
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P3.183 Water at 20°C is delivered from one reservoir to another through a long 8-cm-
diameter pipe. The lower reservoir has a surface elevation z2 = 80 m. The friction loss in the 
pipe is correlated by the formula hloss ≈ 17.5(V2/2g), where V is the average velocity in the 
pipe. If the steady flow rate through the pipe is 1.89 m3/min, estimate the surface elevation of 
the higher reservoir. 

Solution: We may apply Bernoulli here.  Convert 1.89 m3/min = 0.0315 m3/s. 

hf =
17.5V 2

2g
= z1 − z2  

  

17.5
2(9.81 m/s2 )

0.0315m3 / s
(π / 4)(0.08m)2













2

= z1 −80 m  

z1 ≈ 115 m Ans.  

 

P3.184 A fireboat draws seawater (SG = 1.025) from a submerged pipe and discharges it through 
a nozzle, as in Fig. P3.184. The total head loss is 2 m. If the pump efficiency is 75 percent, what 
horsepower motor is required to drive it? 

 
Fig. P3.184 

 
Solution: For seawater, γ = 1.025(1000)(9.81) = 10055.25 N. The energy equation becomes 

p1
ρg

+
V1
2

2g
+ z1 =

p2
ρg

+
V2
2

2g
+ z2 + hf − hp,

or: 0 + 0 + 0 = 0 +
36.5( )2

2 9.81( )
+ 3+ 2 − hp

 

Solve for hp = 72.9 m. The flow rate is Q = V2A2 = (36.5)(π/4)(0.05)2 = 0.0717 m3/s. Then 

 
Ppump =

γQ hp

efficiency
=

10055.25( ) 0.0717( ) 72.9( )
0.75

= 70045.8 W ≈ 94 hp Ans.  
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P3.185      A device for measuring liquid viscosity is shown in Fig. P3.185.  With the 
parameters (ρ, L, H, d) known, the flow rate Q is measured and the viscosity calculated, 
assuming a laminar-flow pipe loss from Chap. 6, hf = (32µLV)/(ρgd2).  Heat transfer and all 
other losses are negligible.  (a) Derive a formula for the viscosity µ of the fluid.  (b) 
Calculate µ  for the case d = 2 mm, ρ = 800 kg/m3, L = 95 cm, H = 30 cm, and Q = 760 cm3/h.  
(c) What is your guess of the fluid in part (b)?  (d) Verify that the Reynolds number Red is less 
than 2000 (laminar pipe flow). 
 

 

 

 

 

 

 

Solution:   Use energy Eq. (3.75) so we don’t forget the laminar kinetic energy correction 
factor  α: 

  

p1
ρg

+
α1V1

2

2g
+ z1 =

p2
ρg

+
α2 V2

2

2g
+ z2 + hturbine − hpump + hf

0 + 0 + H + L = 0 +
α2 V2

2

2g
+ 0 + 0 − 0 +

32µLV2

ρg d2

 

Introduce   Q  = (π/4)(d2)(V2), rewrite, and solve for µ: 

  
µ =

π ρg d4

128 LQ
(H + L) −

α2 ρQ
16π L

Ans.(a)  

 (b) Introduce the given data and compute the viscosity of the liquid.  Convert Q to 
(760cm3/h)/(3600s/h)/(1E6cm3/m3) = 2.11E-7 m3/s.  Recall that α2 = 2.0.  Then 

   

µ =
π(800)(9.81)(0.002)4

128(0.95)(2.11E − 7)
(0.30+ 0.95) − (2.0)(800)(2.11E − 7)

16π (0.95)

= 0.0192 − 0.000007 = 0.0192 kg
m− s

Ans.(b)

 

(c) From Table A.4, both µ and ρ seem to fit kerosene very well.     Ans.(c) 
(d)   Check the diameter Reynolds number of this flow: 

   
Red =

ρ V d
µ

=
4ρQ
π µ d

=
4(800)(2.11E − 7)
π(0.0192)(0.002)

= 5.6 << 2000 OK,laminar  

The flow is so slow (0.067 m/s) that the kinetic energy term is negligible. 
 

ρ 

d 

H 

L 

Q 

Fig. P3.185 
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P3.186 The horizontal pump in Fig. P3.186 discharges 20°C water at 57 m3/h. Neglecting losses, 
what power in kW is delivered to the water by the pump? 

Solution: First we need to compute the velocities at sections (1) and (2): 

 
Fig. P3.186 

V1 =
Q
A1

=
57/3600
π(0.045)2 = 2.49 m

s
; V2 =

Q
A2

=
57/3600
π(0.015)2 = 22.4 m

s
 

Then apply the steady flow energy equation across the pump, neglecting losses: 

p1
ρg

+
V1
2

2g
+ z1 =

p2
ρg

+
V2
2

2g
+ z2 + hf − hp,  

or: 120000
9790

+
(2.49)2

2(9.81)
+ 0 = 400000

9790
+

(22.4)2

2(9.81)
+ 0 + 0 − hp, solve for hp ≈ 53.85 m  

Then the pump power is Pp = γQhp = 9790 57
3600






(53.85) = 8350 W = 8.4 kW Ans.  

 

P3.187 Steam enters a horizontal turbine at 2.413 MPa absolute, 580°C, and 3.7 m/s and is 
discharged at 33.5 m/s and 25°C saturated conditions. The mass flow is 1.13 kg/s, and the 
heat losses are 16.28 kJ/kg of steam. If head losses are negligible, how much horsepower 
does the turbine develop? 

Solution: We have to use the Steam Tables to find the enthalpies. State (2) is saturated 
vapor at 25°C, for which we find h2 ≈ 2547.3 kJ/kg. At state (1), 2.413 MPa and 580°C, we 
find h1 ≈ 3641.1 kJ/kg. The heat loss is 16.28 kJ/kg. The steady flow energy equation is best 
written on a per-mass basis: 

q −ws = h2 +
1
2
V2
2 − h1 −

1
2
V1
2, or:  

−16.28 ×103 −ws = 2547.3×103 + 33.5( )2/2 − 3641.1×103 − 3.7( )2/2, solve for ws ≈ 1077 kJ/kg
 

The result is positive because work is done by the fluid. The turbine power at 100% is 

 
Pturb = mws = 1.13( ) 1077 ×103( ) =1,216,971.26 ≈ 1630 hp Ans.  
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P3.188 Water at 20°C is pumped at 5.7 m3/ min from the lower to the upper reservoir, as  
in Fig. P3.188. Pipe friction losses are approximated by hf ≈ 27V2/(2g), where V is the 
average velocity in the pipe. If the pump is 75 percent efficient, what horse-power is needed 
to drive it? 

 

Fig. P3.188 

Solution: First evaluate the average velocity in the pipe and the friction head loss: 

Q =
5.7
60

= 0.095 m3

s
, so V =

Q
A
=

0.095
π 0.075( )2

= 5.38 m
s

and hf = 27
5.38( )2

2 9.81( )
≈ 39.77 m  

Then apply the steady flow energy equation: 

p1
ρg

+
V1
2

2g
+ z1 =

p2
ρg

+
V2
2

2g
+ z2 + hf − hp,

or: 0 + 0 +15 = 0 + 0 + 46 + 39.77 − hp

 

Thus hp = 70.77 m, so Ppump =
γQhp

η
=

998( ) 9.81( ) 0.095( ) 70.77( )
0.75

 

= 87,762.9 W ≈ 118 hp Ans.  
 

 
P3.189 A typical pump has a head which, for a given shaft rotation rate, varies with the flow 
rate, resulting in a pump performance curve as in Fig. P3.189. Suppose that this pump is 75 
percent efficient and is used for the system in Prob. 3.188. Estimate (a) the flow rate, in 
m3/min, and (b) the horsepower needed to drive the pump. 

 

Fig. P3.189 
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Solution: This time we do not know the flow rate, but the pump head is hp ≈ 91.5 − 0.538Q, 
with Q in cubic meter per second. The energy equation directly above becomes, 

0 + 0 +15 = 0 + 0 + 46 + (27) V2

2 9.81( )
− 91.5 − 0.538Q( ), where Q =V π

4
0.15m( )2  

This becomes the quadratic V2 + 6.93×10−3V− 43.96 = 0,  

solve for V ≈ 6.63 m/s or Q = 0.117m3/s 7.02m3/min( )
   

Then the power is Ppump =
γQhp

η
=

9790.38( ) 0.117( ) 91.5 − 0.538 0.117( ) 
0.75

 

=139,652 W ≈ 187 hp Ans.  

 

P3.190 The insulated tank in Fig. P3.190 is to be filled from a high-pressure air supply. 
Initial conditions in the tank are T = 20°C and p = 200 kPa. When the valve is opened, the 
initial mass flow rate into the tank is 0.013 kg/s. Assuming an ideal gas, estimate the initial rate of 
temperature rise of the air in the tank. 

 

Fig. P3.190 

Solution: For a CV surrounding the tank, with unsteady flow, the energy equation is 

 

d
dt

eρdυ∫( ) − min û + p
ρ
+

V2

2
+ gz









 = Q − Wshaft = 0, neglect V2/2 and gz  

 

Rewrite as d
dt

(ρυcvT) ≈ mincpTin = ρυcv
dT
dt
+ cvTυ dρ

dt
 

where ρ and T are the instantaneous conditions inside the tank. The CV mass flow gives 

 

d
dt

ρ dυ∫( ) − min = 0, or: υ
dρ
dt

= min  

Combine these two to eliminate υ(dρ/dt) and use the given data for air: 

 

dT
dt tank =

m(cp − cv)T
ρυcv

=
(0.013)(1005 − 718)(293)

200000
287(293)








(0.2 m3)(718)

≈ 3.2 °C
s

Ans.  
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P3.191 The pump in Fig. P3.191 creates a 20°C water jet oriented to travel a maximum 
horizontal distance. System friction head losses are 6.5 m. The jet may be approximated by 
the trajectory of frictionless particles. What power must be delivered by the pump? 

 
Fig. P3.191 

Solution: For maximum travel, the jet must exit at θ = 45°, and the exit velocity must be 

V2 sinθ = 2gΔzmax or: V2 =
[2(9.81)(25)]1/2

sin 45°
≈ 31.32 m

s
 

The steady flow energy equation for the piping system may then be evaluated: 

p1/γ +V1
2/2g + z1 = p2/γ +V2

2/2g + z2 + hf − hp,  
or: 0 + 0 +15 = 0 + (31.32)2/ [2(9.81)]+ 2 + 6.5 − hp, solve for hp ≈ 43.5 m  

Then Ppump = γQhp = (9790)
π
4
(0.05)2(31.32)




(43.5) ≈ 26200 W Ans.  

 

P3.192 The large turbine in Fig. P3.192 diverts the river flow under a dam as shown. 
System friction losses are hf = 3.5V2/(2g), where V is the average velocity in the supply 
pipe. For what river flow rate in m3/s will the power extracted be 25 MW? Which of the two 
possible solutions has a better “conversion efficiency”? 

 
Fig. P3.192 

Solution: The flow rate is the unknown, with the turbine power known: 
p1
γ
+
V1
2

2g
+ z1 =

p2
γ
+
V2
2

2g
+ z2 + hf + hturb, or: 0 + 0 + 50 = 0 + 0 +10 + hf + hturb  

where hf = 3.5Vpipe
2 / (2g) and hp = Pp/ (γQ) and Vpipe =

Q
(π/4)Dpipe

2  

Introduce the given numerical data (e.g. Dpipe = 4 m, Ppump = 25E6 W) and solve: 

  Q
3 − 35410Q+ 2.261E6 = 0, with roots Q = +76.5, + 137.9,  and − 214.4 m3/s  

The negative Q is nonsense. The large Q (137.9m3/s) gives large friction loss, hf ≈ 21.5 m. The 
smaller Q (76.5 m3/s) gives hf ≈ 6.6 m, about right. Select Qriver ≈ 76.5 m3/s. Ans. 
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P3.193 Kerosene at 20°C flows through the pump in Fig. P3.193 at 65 L/s. Head losses 
between 1 and 2 are 2.4 m, and the pump delivers 6 kW to the flow. What should the mercury-
manometer reading h m be? 
 
Solution: First establish the two velocities: 

V1 =
Q
A1

=
65 ×10−3m3/s
π/4( ) 0.075( )2

=14.71 m
s

; V2 =
1
4
V1 = 3.68 m

s

 

 
Fig. P3.193 

For kerosene take ρ = 804 kg/m3 or γk = (804)(9.81) = 7887.24 N. For mercury take γm = 
(13600)(9.81) = 133,416 N. Then apply a manometer analysis to determine the pressure 
difference between points 1 and 2: 

p2 − p1 = (γm −γk )h −γkΔz = 133416 − 7887.24( )h − 7887.24( ) 1.5( )

=125,528.76h −11,830.86 N
m2

 

Now apply the steady flow energy equation between points 1 and 2: 

p1

γk
+
V1

2

2g
+ z1 =

p2

γk
+
V2

2

2g
+ z2 + hf − hp, where hp =

P
γkQ

=
6000

7887.24( ) 65 ×10−3( )
=11.70 m  

Thus: p1

7887.24
+

14.71( )2

2 9.81( )
+ 0 = p2

7887.24
+

3.68( )2

2 9.81( )
+1.5 + 2.4 −11.7

Solve p2 − p1 =143.1 kPa

 

Now, with the pressure difference known, apply the manometer result to find h: 

p2 − p1 =143,062.8 =125,528.76 h −11,830.86,

or: h = 143,062.8 +11,830.86
125,528.76

= 1.23 m Ans.
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FUNDAMENTALS OF ENGINEERING EXAM PROBLEMS: Answers 

FE3.1 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If the 
flow rate is 160 gal/min, what is the average velocity at section 1? 

(a) 2.6 m/s (b) 0.81 m/s (c) 93 m/s (d) 23 m/s (e) 1.62 m/s 
FE3.2 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If the 
flow rate is 160 gal/min and friction is neglected, what is the gage pressure at section 1? 

(a) 1.4 kPa (b) 32 kPa (c) 43 kPa (d) 22 kPa (e) 123 kPa 
FE3.3 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If the 
exit velocity is V2 = 8 m/s and friction is neglected, what is the axial flange force required to 
keep the nozzle attached to pipe 1? 

(a) 11 N (b) 36 N (c) 83 N (d) 123 N (e) 110 N 
FE3.4 In Fig. FE3.1 water exits from a nozzle into atmospheric pressure of 101 kPa. If the 
manometer fluid has a specific gravity of 1.6 and h = 66 cm, with friction neglected, what is 
the average velocity at section 2? 

(a) 4.55 m/s (b) 2.4 m/s (c) 2.8 m/s (d) 5.55 m/s (e) 3.4 m/s 
FE3.5 A jet of water 3 cm in diameter strikes normal to a plate as in Fig. FE3.5. If the force 
required to hold the plate is 23 N, what is the jet velocity? 

(a) 2.85 m/s (b) 5.7 m/s (c) 8.1 m/s (d) 4.0 m/s (e) 23 m/s 
FE3.6 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as in 
Fig. FE3.6. If friction is neglected and the flow rate is 1.895 m3/min, how high will the outlet 
water jet rise? 

(a) 2.0 m (b) 9.8 m (c) 32 m (d) 64 m (e) 98 m 
FE3.7 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as in 
Fig. FE3.6. If friction is neglected and the pump increases the pressure at section 1 to  
51 kPa (gage), what will be the resulting flow rate? 

(a) 708 L/min (b) 753 L/min (c) 810 L/min (d) 1359 L/min (e) 534 L/min 
FE3.8 A fireboat pump delivers water to a vertical nozzle with a 3:1 diameter ratio, as in 
Fig. FE3.6. If duct and nozzle friction are neglected and the pump provides 3.75 m of head to 
the flow, what will be the outlet flow rate? 

(a) 322 L/min (b) 454 L/min (c) 583 L/min (d) 821 L/min (e) 1079 L/min 
FE3.9 Water flowing in a smooth 6-cm-diameter pipe enters a venturi contraction with a 
throat diameter of 3 cm. Upstream pressure is 120 kPa. If cavitation occurs in the throat at a 
flow rate of 155 gal/min, what is the estimated fluid vapor pressure, assuming ideal 
frictionless flow? 

(a) 6 kPa (b) 12 kPa (c) 24 kPa (d) 31 kPa (e) 52 kPa 
FE3.10 Water flowing in a smooth 6-cm-diameter pipe enters a venturi contraction with a 
throat diameter of 4 cm. Upstream pressure is 120 kPa. If the pressure in the throat is  
50 kPa, what is the flow rate, assuming ideal frictionless flow? 
(a) 28 L/min (b) 893 L/min (c) 996 L/min (d) 2820 L/min (e) 3986/min 
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Fig. FE3.1 

 
Fig. FE3.5 

 

 

Fig. FE3.6 
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COMPREHENSIVE PROBLEMS 
 
C3.1 In a certain industrial process, oil of 
density ρ flows through the inclined pipe in the 
figure. A U-tube manometer with fluid density 
ρm, measures the pressure difference between 
points 1 and 2, as shown. The flow is steady, so 
that fluids in the U-tube are stationary. (a) Find 
an analytic expression  
for p1 − p2 in terms of system parameters.  
(b) Discuss the conditions on h necessary for 
there to be no flow in the pipe. (c) What about 
flow up, from 1 to 2? (d) What about flow 
down, from 2 to 1?  

Solution: (a) Start at 1 and work your way around the U-tube to point 2: 

p1 + ρgs + ρgh − ρmgh − ρgs − ρgΔz = p2,
or: p1 − p2 = ρgΔz + (ρm − ρ)gh where Δz = z2 − z1 Ans. (a)

 

(b) If there is no flow, the pressure is entirely hydrostatic, therefore Δp = ρg and, since ρm ≠ 
ρ, it follows from Ans. (a) above that h =  0 Ans. (b) 
(c) If h is positive (as in the figure above), p1 is greater than it would be for no flow, because 
of head losses in the pipe. Thus, if h >  0, flow is up from 1 to 2. Ans. (c) 
(d) If h is negative, p1 is less than it would be for no flow, because the head losses act against 
hydrostatics. Thus, if h <  0, flow is down from 2 to 1. Ans. (d) 

Note that h is a direct measure of flow, regardless of the angle θ of the pipe. 
 

C3.2 A rigid tank of volume υ = 1.0 m3  
is initially filled with air at 20°C and po = 100 
kPa. At time t = 0, a vacuum pump is turned on 
and evacuates air at a constant volume flow 
rate Q = 80 L/min (regardless of the pressure). 
Assume an ideal gas and an isothermal process. 
(a) Set up a differential equation for this flow. 
(b) Solve this equation for t as a function of (υ, 
Q, p, po). (c) Compute the time in minutes to 
pump the tank down to p = 20 kPa. [Hint: Your 
answer should lie between 15 and 25 minutes.] 

 

Solution: The control volume encloses the tank, as shown. The CV mass flow relation 
becomes 

 

d
dt

ρdυ∫( ) +∑ mout −∑ min = 0  

Assuming that ρ is constant throughout the tank, the integral equals ρυ, and we obtain 

υ
dρ
dt

+ ρQ = 0, or: dρ
ρ

∫ = −
Q
υ

dt∫ , yielding ln ρ
ρo









 = −

Qt
υ
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Where ρo is the initial density. But, for an isothermal ideal gas, ρ/ρo = p/po. Thus the time 
required to pump the tank down to pressure p is given by 

t = − υ
Q
ln p
po









 Ans. (a, b)  

(c) For our particular numbers, noting Q = 80 L/min = 0.080 m3/min, the time to pump a 1 
m3 tank down from 100 to 20 kPa is 

t = − 1.0 m3

0.08 m3/min
ln 20

100






 = 20.1 min Ans. (c)  

 

C3.3 Suppose the same steady water jet 
as in Prob. 3.45 (jet velocity 8 m/s and jet 
diameter 10 cm) impinges instead on a cup 
cavity as shown in the figure. The water is 
turned 180° and exits, due to friction, at 
lower velocity, Ve = 4 m/s. (Looking from 
the left, the exit jet is a circular annulus of 
outer radius R and thickness h, flowing 
toward the viewer.) The cup has a radius 
of curvature of 25 cm. Find (a) the thickness 
h of the exit jet, and (b) the force F 
required to hold the cupped object in place. 
(c) Compare 

 
Fig. C3.3 

part (b) to Prob. 3.45, where F = 500 N, and give a physical explanation as to why F has 
changed. 
 
Solution: For a steady-flow control volume enclosing the block and cutting through the jets, 
we obtain ΣQin = ΣQout, or: 

Vj
π
4
Dj

2 =Veπ[R2 − (R − h)2 ], or: h = R − R2 −
Vj
Ve

Dj
2

4
Ans. (a)  

For our particular numbers, 

h = 0.25 − (0.25)2 −
8
4

(0.1)2

4
= 0.25 − 0.2398 = 0.0102 m = 1.02 cm Ans. (a)  

(b) Use the momentum relation, assuming no net pressure force except for F: 

 

∑Fx = −F = mjet (−Ve )− mjet (Vj ), or: F = ρVj
π
4
Dj
2 (Vj +Ve ) Ans. (b)  

For our particular numbers: 

F = 998(8) π
4

(0.1)2 (8 + 4) = 752 N to the left Ans. (b)  

(c) The answer to Prob. 3.45 was 502 N. We get 50% more because we turned through 180°, 
not 90°. Ans. (c) 
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C3.4 The air flow beneath an air hockey 
puck is very complex, especially since the air 
jets from the table impinge on the puck at 
various points asymmetrically. A reasonable 
approximation is that, at any given time, 
the 

 
 

gage pressure on the bottom of the puck is halfway between zero (atmospheric) and the stagnation 
pressure of the impinging jets, po = 1/2 ρVjet2. (a) Find the velocity Vjet required to support a puck 
of weight W and diameter d, with air density ρ as a parameter. (b) For W = 0.22 N and d = 6.35 
cm, estimate the required jet velocity in m/s. 
 
Solution: (a) The puck has atmospheric pressure on the top and slightly higher on the 
bottom: 

(punder − pa )Apuck =W =
1
2

0 + ρ
2
Vjet

2






π
4
d2, Solve for Vjet =

4
d

W
πρ

Ans. (a)  

For our particular numbers, W = 0.22 N and d = 6.35 cm, we assume sea-level air,  
ρ = 1.22 kg/m3, and obtain 

Vjet =
4

0.0635( )
0.22 N

π 1.22kg/m3( )
= 15.1 m / s Ans. (b)  
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C3.5 Neglecting friction sometimes leads to 
odd results. You are asked to analyze and 
discuss the following example in Fig. C3.5. A 
fan blows air vertically through a duct from 
section 1 to section 2, as shown. Assume 
constant air density ρ. Neglecting frictional 
losses, find a relation between the required fan 
head hp and the flow rate and the elevation 
change. Then explain what may be an 
unexpected result. 

Solution: Neglecting frictional losses, hf = 0, 
and Bernoulli becomes, 

p1
ρg

+
V1
2

2g
+ z1 =

p2
ρg

+ z2 +
V2
2

2g
− hp  

 
Fig. C3.5 

p1
ρg

+
V1
2

2g
+ z1 =

p2 + ρg(z1 − z2 )
ρg

+
V2
2

2g
+ z2 − hp  

Since the fan draws from and exhausts to atmosphere, V1 = V2 ≈ 0. Solving for hp, 

hp = ρg(z1 − z2 )+ ρgz2 − ρgz1 = 0 Ans.  

Without friction, and with V1 = V2, the energy equation predicts that hp =  0! Because the air 
has insignificant weight, as compared to a heavier fluid such as water, the power input 
required to lift the air is also negligible. 

 


