
PROBLEM 8.30 
 

 
KNOWN:  Diameter and length of tube, air flow rate, air temperature and pressure at the tube inlet. 
Surface temperature at the tube exit. 
 
FIND:  (a) The heat transfer rate of the problem. (b) Conditions at the tube exit for reduced tube 
length. (c) Conditions at the tube exit for increased air flow rate. 
 
SCHEMATIC: 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Negligible viscous 
dissipation. 
 
PROPERTIES:  Table A.4, Air ( mT  ≈ 400 K, p = 1 atm): μ = 230.1×10-7 N⋅s/m2, Pr = 0.690, k = 
0.0338 W/m⋅K, cp = 1014 J/kg⋅K. 
 
ANALYSIS:  (a) We begin by calculating the Reynolds number 
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Therefore, the flow is laminar. The hydrodynamic and thermal entrance lengths are 
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Therefore, the flow is fully-developed at the tube exit. For fully-developed laminar flow with constant 
heat flux conditions, the Nusselt number is NuD = 4.36. Therefore, the local heat transfer coefficient at 
the tube exit is 
 
  24.36 / 4.36 0.0338 W/m K / 0.005m 29.47 W/m Kh k D= = × ⋅ = ⋅  
 
Two independent expressions for the heat flux may be written based upon application of Newton’s law 
of cooling at the tube exit and an overall energy balance. 
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Equating Eqs. (1) and (2) yields 
 

Continued… 
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PROBLEM 8.30 (Cont.) 
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             = 152.3°C 
 
Hence, the heat rate is 
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(b) If L = 0.2 m, conditions at x = L are not fully developed and the value of the heat transfer 
coefficient at the tube exit would exceed that of part (a). 
 
(c) If the flow rate is increased by an order of magnitude, the Reynolds number will increase to ReD = 
14,940, and the flow will be turbulent at the tube exit. Since L/D = 2 m / 0.005 m = 400, the turbulent 
flow at the tube exit will also be fully developed. The heat transfer coefficient at the tube exit would 
exceed that of part (a). 
 
COMMENTS:  In part (b), the local heat transfer coefficient would exceed h = 29.47 W/m2 at the 
tube exit and could be estimated using Fig. 8.10a. Specifically, for Gz-1 = (x/D)/(ReDPr) = (0.2 m/ 
0.005 m)/(1494 × 0.690) = 0.039,  NuD ≈ 4.6. Hence, h = 29.47 W/m2 × (4.6/4.36) = 31.1 W/m2⋅K. In 
part (c), the local heat transfer coefficient would exceed h = 29.47 W/m2 and could be evaluated using 
the Dittus-Boelter correlation. Specifically, NuD = 0.023×(14,940)4/50.6900.4 = 43.3. Hence, h = 29.47 
W/m2 × (43.3/4.36) = 292.7 W/m2⋅K. For Ts,o to remain the same, the heat rate associated with either 
part (b) or part (c)  would have to exceed that of part (a). 
 
 


