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P7.1 An ideal gas, at 20°C and 1 atm, flows at 12 m/s past a thin flat plate. At a position
60 cm downstream of the leading edge, the boundary layer thickness is 5 mm. Which of the
13 gases in Table A.4 is this likely to be?

Solution: We are looking for the kinematic viscosity. For a gas at low velocity and a short
distance, we can guess laminar flow. Then we can begin by trying Eq. (7.1a):

8 _0005m _ 50 _ 50 _  504v
x 06m  JRe, NVx/v J(12m/s)0.6m)

Solve for v=20E-5m’/s

The only gas in Table A.4 which matches this viscosity is the last one, CH,.  Ans.
But wait! Is it laminar? Check Re, = (12)(0.6)/(2.0E-5) = 360,000. Yes, OK.

7.2 A gas at 20°C flows at 2.5 m/s past a smooth, sharp flat plate. Atx =206 cm, the
boundary layer thickness is 5 cm. Which of the gases in Table A.4 is this most likely
to be?

Solution: Distance x fairly long, but let’s begin by guessing a laminar boundary layer:

9 _ooem 0.0243 = . , solve Re_ = 42,400 (OK for laminar flow)
x 206cm Re x
X
2
If this is correct, Re_=42,400 = 0% = 2200 "0 y21E.4
v v s

This value of v exactly matches helium in Table A.4. It is not far from the value for
hydrogen, but the helium result is right on the money.  Ans.

Guessing turbulent flow, &/x = 0.0243 = 0.16/Re,"’, solve Re, ~ 541,000 (too small for
transition to turbulence on a smooth wall). This would give v = 9.3E-6, about 15% greater
than the kinematic viscosity of CO,. But the Reynolds number is too low, so I reject this
answer.

P7.3 Equation (7.10) assumes that the boundary layer on the plate is turbulent from the
leading edge onward. Devise a scheme for determining the boundary-layer thickness more
accurately when the flow is laminar up to a point Rex crit and turbulent thereafter. Apply this
scheme to computation of the boundary-layer thickness at x = 1.5 m in 40 m/s flow of air at



20°C and 1 atm past a flat plate. Compare your result with Eq. (7.1b). Assume Rexcrit =
1.2E6.

X crit
Xeff
Fig. P7.3

Solution: Given the transition point Xcrit, Recrit, calculate the laminar boundary layer thick-ness
& at that point, as shown above, dc/Xc =~ 5.0/Recrit 2. Then find the “apparent” distance upstream,
Lc, which gives the same turbulent boundary layer thickness, 6./L, =0.16/Re; " Then begin
Xeffective at this “apparent origin” and calculate the remainder of the turbulent boundary layer as
8/ Xeff ~ 0.16/Reefr'’”. Tllustrate with a numerical example as requested. For air at 20°C, take p =
1.2 kg/m? and u = 1.8E-5 kg/m's.

Rey =12E6=200%e i _045m, then 8, =22 (00205 m
1.8E-5 (1.2E6)
7/6 1/6 7/6 1/6
Compute L, =[O | (LU} (000205} 126001 4 75y 1y
0.16) | u 0.16 1.8E-5

Finally, at x = 1.5 m, compute the effective distance and the effective Reynolds number:

1.2(40)(1.12
X = X+L, —x, =1.5+00731-045=1.123 m, Rey = 2UOWLIZD ) g95p6

1.8E-5

0.16x. _ 0.16(1.123) ~0.0213m Ans.

Rell  (2.995E6)"

5|1.5 m~

Compare with a straight all-turbulent-flow calculation from Eq. (7.1b):

L _12640)15)
* 18E-5

0.16(1.5)

~4.0E6, whence 6| 5 =
hs (4.0E6)"

~0.027m (25% higher) Ans.

P7.4 A smooth ceramic sphere (SG = 2.6) is immersed in a flow of water at 20°C and 25
cm/s. What is the sphere diameter if it is encountering (a) creeping motion, Req = 1; or (b)
transition to turbulence, Regs = 250,000?



Solution: For water, take p = 998 kg/m® and u = 0.001 kg/m:s.
(a) Set Req equal to 1:

pvd (998 kg/m3 )(0.25 m/s)d
u 0.001 kg/m-s
Solve for d=4E-6 m=4 um Ans. (a)

(b) Similarly, at the transition Reynolds number,

(998 kg/m*)(0.25 m/s)d

Re, = 250000 =
0.001 kg/m-s

, solvefor d=1.0m Auns. (b)

P7.5 A I-mm-diameter steel sphere (SG = 7.6) is immersed in a flow of water at the speed
of 0.2 m/s. Suppose we know that Re, = 200, what would be the water temperature?

Solution: Given V =0.2 m/sand d =1x 10~ mand Re, = 200, we have

Re, =200 = 24 @

u

Substitute V and d into ©, we then have

P 1,000,000
u
From table A.2, at T = 20°C,
P _ 995015
u
and at T = 30°C,
P _ 1246558
u

By interpolation, we would have water temperature equals to 20.2°C. Ans.

P7.6 SAE 30 oil at 20°C flows at 0.05 m>/s from a reservoir into a 15-cm-diameter pipe.
Use flat-plate theory to estimate the position x where the pipe-wall boundary layers meet
in the center. Compare with Eq. (6.5), and give some explanations for the discrepancy.

Solution: For SAE 30 oil at 20°C, take p = 891 kg/m® and © = 2.9 x 10" kg/m's. The
average velocity and pipe Reynolds number are:

=9 —— =283 —, Re

b

Vave = > =2 = 1304 (laminar)
A (7/4)(0.15) S u 0.29

0.05 m _ pVD _ 891(2.83)(0.15)
D= =



Using Eq. (7.1a) for laminar flow, find “x¢”” where 6 = D/2 = 7.5 cm:

OV _ (0.075)"(891)(2.83)
© 25u 25(0.29)

~1.96 m Ans. (flat-plate boundary layer estimate)

This is far from the truth, much too short. Equation (6.5) for laminar pipe flow predicts
X, =0.06D Re =0.06(0.15 m)(1304) = 11.7m  Alternate Ans.

The entrance flow is accelerating, a favorable pressure gradient, as the core velocity
increases from V to 2V, and the accelerating boundary layer is much thinner and takes
much longer to grow to the center. Ans.

P7.7 For the laminar parabolic boundary-layer profile of Eq. (7.6), compute the shape factor
“H” and compare with the exact Blasius-theory result, Eq. (7.31).

Solution: Given the profile approximation u/U =~ 21 — 1%, where 1 = y/8, compute

(l—ﬁ)dy 6f(2n n>)1- 2n+n)dn-—55

u 2 1
——|dy=6((1-2 dn=—-5
U) y {( n+n-)dn 3

Hence H = 06%/0=(6/3)/(26/15) =2.50 (compared to 2.59 for Blasius solution)

P7.8 Air at 20°C and 1 atm enters a 40-cm-square duct as in Fig. P7.8. Using the
“displacement thickness” concept of Fig. 7.4, estimate (a) the mean velocity and (b) the mean
pressure in the core of the flow at the position x = 3 m. (c) What is the average gradient, in
Pa/m, in this section?

40 x 40 cm square duct
Boundary layers

2m/s
—_— UCOI"C

| 3m |

Fig. P7.8

Solution: For air at 20°C, take p = 1.2 kg/m> and u = 1.8E-5 kg/m-s. Using laminar
boundary-layer theory, compute the displacement thickness at x = 3 m:

_pUx _122)3) _ - (laminar), &% - 1.721x _ 1.721(3)

Re, = = =
* u  18E-5 Re!”  (4E5)"

~0.0082 m




2 2
Then, by continuity, V_; =V (LL—O25*) =(2.0) (ﬁ)

~2175 2 Ans.(a)
S
The pressure change in the (frictionless) core flow is estimated from Bernoulli’s equation:
Posic + gim —p, + gvj . OF Pug + %(2.175)2 ~1atm+ %(2.0)2

Solve for pl,_s,= 1 atm— 0.44 Pa= -0.44 Pa (gage) Ans. (b)

The average pressure gradient is Ap/x = (-0.44 Pa/3.0 m) = —0.15 Pa/m Ans. (c)

P7.9 Air, p =1.2 kg/m® and u = 1.8E-5 kg/m's, flows at 10 m/s past a flat plate. At the
trailing edge of the plate, the following velocity profile data are measured:

y, mm: 0 05 1.0 2.0 3.0 4.0 5.0 6.0
u, m/s: 0 1.75 3.47 6.58 8.70 9.68 10.0  10.0
w(U —u),m?s: 0 14.44 22.66 22.50 11.31 3.10 0.0 0.0

If the upper surface has an area of 0.6 mz, estimate, using momentum concepts, the friction
drag, in newtons, on the upper surface.

Solution: Make a numerical estimate of drag from Eq. (7.2): F = pbf u(U - u)dy. We have
added the numerical values of u(U — u) to the data above. Using the trapezoidal rule between
each pair of points in this table yields

0

3
fu(U—u)dy~L 0’5(O+14.44)+(14.44+22.66)+m ~0061 ™
0 1000 2 2 S

The drag is approximately F = 1.2h(0.061) = 0.073b newtons or 0.073 N/m. Ans.

7.10 Repeat the flat-plate momentum analysis of Sec. 7.2 by replacing Eq. (7.6) with the
simple but unrealistic linear velocity profile suggested by Schlichting [1]:

LA 2 for 0<sy<¢
U o

Compute momentum-integral estimates of ¢, 6/x, &%/x, and H.



Solution: Carry out the same integrations as Section 7.2. Results are less accurate:

° u u y y y 0 y u 0 0/2
0= [=(0-—)dy= [=(1-")dy=—; 6*= [(l-—)dy = —; H=—-=3.0
{U( ik {5( )= {( Y= T
T, = y£= ,oUZﬁ = ,oU2 d(076) ; Integrate: 2 ~ Ji2 ~ 3.64
0 dx dx x  JRe, Re,
Substitute these results back for the following inaccurate estimates:
%
c; = 0 = 0.577 ; 5— = 1.732 ;. H =30 Ans.(a,b,c,d)
X Re X Re

X X

P7.11 Repeat Prob. 7.10, using the polynomial profile suggested by K. Pohlhausen in 1921:

304
A

~2 53 4

=
> |
>

Does this profile satisfy the boundary conditions of laminar flat-plate flow?

Solution: Pohlhausen’s quadratic profile satisfies no-slip at the wall, a smooth merge with u

— U as y — 0, and, further, the boundary-layer curvature condition at the wall. From Eq.
(7.19b),

( Ju Ju u072u\ d*u

ku—+v————2J =0, or: FWﬁll:O for flat-plate flow (?=0)
y X

This profile gives the following integral approximations:

2
0 z3—75; OF = i6; T, = M—Uz ,oUzi(3—7 ) , integrate to obtain:
315 10 0 dx \ 315
é~ \(1260/37) ~ 583 C _Q~ 0.685
X Re, Re, T Re, ’
o* 1.751

— = ; H=2.554 Ans.(a,b,c,d)
X Re

X




P7.12 Air at 20°C and 1 atm flows at 2 m/s past a sharp flat plate. Assuming that the
Kérmdn parabolic-profile analysis, Eqs. (7.6-7.10), is accurate, estimate (a) the local velocity
u; and (b) the local shear stress 7 at the position (x, y) = (50 cm, 5 mm).

Solution: For air, take p = 1.2 kg/m’® and u = 1.8E-5 kg/m-s. First compute Rex =

(1.2)(2)(0.5)/(1.8E-5) = 66667, and d(x) = (0.5m)(5.5)/(66667)"> = 0.01065 m. The
location we want is y/6 = 5 mm/10.65 mm = 0.47, and Eq. (7.6) predicts local velocity:

2
u(0.5 m, 5 mm) = U(25_y - ;—2) = (2 m/s)[2(0.47)- (0.47)* 1= 1.44m/s Ans. (a)

The local shear stress at this y position is estimated by differentiating Eq. (7.6):

du uU (2 _2_y) _ (1.8E-5 kg/m's)(2 m/s) [2-2(0.47)]

705 m,5Smm)=yu—=-—
dy 0 o 0.01065 m

=0.0036 Pa Ans.(b)

P7.13 The velocity profile shape u/U = 1 — exp(—4.605y/9) is a smooth curve with u =0 at y
=0 and u = 099U at y = J and thus would seem to be a reasonable substitute for
the parabolic flat-plate profile of Eq. (7.3). Yet when this new profile is used in the integral
analysis of Sec. 7.3, we get the lousy result §/x = 9.2/Re¥ 2, which is 80 percent high. What is
the reason for the inaccuracy? [Hint: The answer lies in evaluating the laminar boundary-
layer momentum equation (7.19b) at the wall, y = 0.]

Solution: This profile satisfies no-slip at the wall and merges very smoothly with u — U at
the outer edge, but it does not have the right shape for flat-plate flow. It does not satisfy the
zero curvature condition at the wall (see Prob. 7.10 for further details):

2 2
Evaluate Z—lzl’y=0z —(46%) U=-
y

21.2U
62

=0 by along measure!

The profile has a strong negative curvature at the wall and simulates a favorable pressure
gradient shape. Its momentum and displacement thickness are much too small.

P7.14 The velocity distribution profile is given as u/U = 3(y/8) - 2(y/5)*. How much does
displacement thickness of the profile deviate from exact solution of laminar flat-plate flow?

Solution: Following the procedure presented in sec. 7.2, the velocity profile is given as

2
u Y Yy 2
—=3=|-2%| =3n-2



The wall shear stress is

T, =U—
Y| 0

U d(/U)
5 d(y/9)|, 50

_wdu/U)
0 dn

d 3ulU
L GBn-2pt) =22
dn 0

n=0

w

ulU
0
and from the momentum integral equation

T —pUzd—éf (——)dn
pu? 42 f (3n-2n°)(1-3n+2n%)dn
2‘1‘3[ (B3n-11n* +121° + 4n*)dn

t, =0.033pU° 4o @
dx

® = @, we have

MY - 0.033p

Integrate ®,

At x=0,6=0, then C=0

This solution is so different from exact solution. This given velocity profile is wrong.




P7.15 Derive modified forms of the laminar boundary-layer equations for flow along the
outside of a circular cylinder of constant R, as in Fig. P7.15. Consider the two cases (a)
0 << R; and (b) 6 = R. What are the boundary conditions?

Solution: The Navier-Stokes equations for cylindrical coordinates are given in Appendix
D, with “x” in the Fig. P7.15 denoting the axial coordinate “z.” Assume ‘“axisymmetric”
flow, that is, vy =0 and d/d0 = 0 everywhere. The boundary layer assumptions are:

—o(x)

p = constant

Fig. P7.15

% J 0
v, << u; 07_u<< ﬂ; Ve << Ve ; hence r-momentum (Eq. D-5) becomes 7P _ 0
JXx Jr Jx or or

Thus p = p(x) only, and for a long straight cylinder, p = constant and U = constant

Then, with dp/dx = 0, the x-momentum equation (D-7 in the Appendix) becomes

puﬂ+pvrd—uzﬂi(ra—u) when 6 =R Ans. (b)
X Jr r Jr

1
plus continuity: Iu + —i(rvr) ~0 when =R Ans.(b)
JX ror

For thick boundary layers (part b) the radial geometry is important.

If, however, the boundary layer is very thin, § << R, thenr =R + y = R itself, and we can use
(x, y) coordinates:

. d .
Continuity: a_u+ V' 20 if 5<< R Ans. (a)
dx dy
2
X-momentum: pua—u + oV, ou ~ Ma—z{ if 6 <<R Ans.(a)
0x ay ay

Thus a thin boundary-layer on a cylinder is exactly the same as flat-plate (Blasius) flow.




10

P7.16 Show that the two-dimensional laminar-flow pattern with dp/dx = 0,
u=U,(1-¢%) v=v,<0

is an exact solution to the boundary-layer equations (7.19). Find the value of the constant C
in terms of the flow parameters. Are the boundary conditions satisfied? What might this flow
represent?

A
Ll

L1 1 M
vVYOoOvYVYVYYY ©

Fig. P7.16

Solution: Substitute these (u,v) into the x-momentum equation (7.19b) with du/dx = 0:

Ju Jdu aZU C 2 C
u—+pv—=pu—-s>, or: 0+p(v )(-CUe™ J=u(-CU,e™ )
pu——*p Iy M&y P 0)( o ) M( )

or: C=pv,/u=constant <0

If the constant is negative, u does not go to % and the solution represents laminar boundary-
layer flow past a flat plate with wall suction, vo < O (see figure). It satisfies

aty =0:u=0 (no slip) and v = vo (suction); as y — o, u = U, (freestream)

The thickness 6, where u = 0.99U,, is defined by exp(pvod/u) = 0.01, or 6 = -4.6u/pvo.

P7.17 Discuss whether fully developed
laminar incompressible flow between
parallel plates, Eq. (4.143) and Fig. 4.16b,
represents an exact solution to the
boundary-layer equations (7.19) and the
boundary conditions (7.20). In what sense,
if any, are duct flows also boundary-layer
flows?

Fig. 4.16

Solution: The analysis for flow between parallel plates leads to Eq. (4.143):

2 2
u=(@)h_/1_Y_2\; v=0; @=constant<0; d—p=0, u(xh)=0
dx)2ul " n?) dx dy

It is indeed a “boundary layer,” with v <<u and dp/dy = 0. The “freestream” is the
centerline velocity, Umax = (—dp/dx)(h2/2u). The boundary layer does not grow because it is
constrained by the two walls. The entire duct is filled with boundary layer. Ans.
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P7.18 A thin flat plate 55 by 110 cm is U
immersed in a 6-m/s stream of SAE 10 oil at SAE 10 oil
20°C. Compute the total friction drag if the
stream is parallel to (a) the long side and _
(b) the short side. L

Solution: For SAE 30 oil at 20°C, take p = 891 kg/m> and u = 0.29 kg/m:s.

(@) L=110cm, Re; = 8160A.D _ 20300 (laminar), Cp 1328

== ~0.00933
0.29 (20300)

F=Cp (g) U?(2bL) =0.00933 (%) (6)*[2(0.55)(1.1)] = 181N Ans. (a)

The drag is 41% more if we align the flow with the short side:

(b) L=55cm, Re; =10140, C,=0.0132, F=256N (41% more) Ans.(b)

7.19 Consider laminar flow past a flat plate of width b and length L. What percentage of

the friction drag on the plate is carried by the rear half of the plate?

Solution: The formula for laminar boundary drag on a plate is Eq. (7.26):

D(x) = 0.664[);01/2 Ml/z U242 2 (const) x1/2

At x = L, we obtain a force equal to (const) L'?. At x = L/2, we obtain a force equal to (const)

L'">V2, which is 70.7% of the total force. Thus the force on the trailing half of the plate is
only (100 — 70.7) = 29.3% of the total force on the plate.

P7.20 The approximate answers to Prob. 7.12 are u = 1.44 m/s and 7= 0.0036 Pa at x = 50
cm and y = 5 mm. [Do not reveal this to your friends who are working on Prob. 7.12.] Repeat

that problem by using the exact Blasius flat-plate boundary-layer solution.

Solution: (a) Calculate the Blasius variable 1 (Eq. 7.21), then find f ' = u/U at that position:

0=y =(0.005 m) 2 mjs =258,
VX (0.000015 m“/s)(0.5 m)

Table7.1: % ~0.768, .. u~1.54m/s Ans.(a)

(b) Differentiate Eq. (7.21) to find the local shear stress:

d /U .
T=u—=u—IUf'(n)]=ulU,— f"(n). At n=2.58, estimate f"(n)=0.217
dy dy VX

(2.0)
(0.000015)(0.5)

Then 7 =(0.000018)(2.0) \/ (0.217)=0.0040 Pa  Ans. (b)
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P7.21 Air at 20°C and 1 atm flows at 15 m/s past a thin flat plate whose area (bL) is
2.2 m% If the total friction drag is 1.3 N, what are the length and width of the plate?

Solution: For air at 20°C and 1 atm, take p= 1.2 kg/m3 and u=1.8 x 107 N-s/m>. Low
speed air, not too big a plate: Guess laminar flow and check this later. Use Eq. (7.27):

C, = 1.328 (one side) hence F=CD§V2217L, where bL =22 m’

D
ReL

Apply data: F =13 N =

1.328v1.8E -5 (E
Ja2asyr \ 2
Solve: L =3.63 = 2—5\/2, or:NL=061 L =037Tm,b=60m Ans.

)(15)22bL

Check the Reynolds number: Re; = (1.2)(15)(0.37)/(1.8E-5) = 370,000. Laminar, OK.

P7.22 Air at 20°C and 1 atm flows at 20 m/s past the flat plate in Fig. P7.22. A pitot stagnation
tube, placed 2 mm from the wall, develops a manometer head 2 = 16 mm of Meriam red oil,
SG = 0.827. Use this information to estimate the downstream position x of the pitot tube.
Assume laminar flow.

T - Boundary layer
0ms -7
—-—-»/ e —_— j _r_
e 2 mm
’ ‘ ¥
- x | —
- f
Fig. P7.22

Solution: For air at 20°C, take p = 1.2 kg/m? and u = 1.8E-5 kg/m's. Assume constant
stream pressure, then the manometer can be used to estimate the local velocity u at the
position of the pitot inlet:

AP, = Py = Po = (Poii = Paie )N 1o = [0.827(998) —1.2](9.81)(0.016) ~ 129 Pa
Then u 2Ap/p1"* =[2(129)/1 21" = 14.7 m/s

pitot inlet =~ [

Now, with u known, the Blasius solution uses u/U to determine the position 7:

LA 147 =0.734, Table 7.1read n=242=y(U/vx)"?

U 20
or: x =(UW)(y/m)* =(20/1.5E-5)(0.002/2.42Y ~0.908 m Ans.

Check Rex = (20)(0.908)/(1.5E-5) = 1.21E6, OK, laminar if the flow is very smooth.
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P7.23 For the experimental set-up of Fig. P7.22, suppose the stream velocity is unknown
and the pitot stagnation tube is traversed across the boundary layer of air at 1 atm and 20°C.
The manometer fluid is Meriam red oil, and the following readings are made:

y, mm: 05 10 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0
h, mm: 1.2 46 98 158 212 253 278 290 297 29.7

Using this data only (not the Blasius theory) estimate (a) the stream velocity, (b) the
boundary layer thickness, (c) the wall shear stress, and (d) the total friction drag between the
leading edge and the position of the pitot tube.

Solution: As in Prob. 7.22, the air velocity u = [2(oil — Pair)gh/pair] /2. For the oil, take poil
= 0.827(998) = 825 kg/m>. For air, p = 1.2 kg/m> and u = 1.8E-5 kg/m's. (a, b) We see that &
levels out to 29.7 mm at y = 4.5 mm. Thus

U, =[2(825-1.2)(9.81)(0.0297)/1.2]"* =200 m/s Ans.(a) 6 =4.5mm Ans. (b)
(c) The wall shear stress is estimated from the derivative of velocity at the wall:

ou Au
T =U— | _o=u—=(1.8E-5
w M &y y=0 MAy ( )(

4.02-0

—) ~0.14Pa Ans.(c)
0.0005-0

where we have calculated unear-wall = [2(825 — 1.2)(9.81)(0.0012)/1.2]"2 = 4.02 m/s.
(d) To estimate drag, first see if the boundary layer is laminar. Evaluate Reg:

~1.44E6

1.2(2 004 C .
Res = pUo = (20)(0.0045) ~ 6000, which implies Re, ...,
u 1.8E-5 ’
This is a little high, maybe, but let us assume a smooth wall, therefore laminar, in which case
the drag is twice the local shear stress times the wall area. From Prob. 7.22, we estimated the
distance x to be 0.908 m. Thus

F =2t xb=2(0.14 Pa)(0.908 m)(1.0) = 0.25 N per meter of width. Ans.(d)

P7.24 For the Blasius flat-plate problem, Eqgs. (7.21) to (7.23), does a two-dimensional
stream function y/(x, y) exist? If so, determine the correct dimensionless form for 1, assuming
that i = 0 at the wall, y = 0.

Solution: A stream function y(x, y) does exist because the flow satisfies the two-
dimensional equation of continuity, Eq. (7.19a). That is, u = dy/dy and v = —-dy/Jdx. Given
the “Blasius” form of u, we may integrate to find :

Y y ( df) y ( df)
=—, th = d =const U—|d d /U
u=y s Judylycons = [ an) { n(Vvx )

0

n
or Y= (VXU)I/ZI df = (vxU)"*t  Ans.
0

The integration assumes that = 0 at y = 0, which is very convenient.
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P7.25 Suppose you buy a 1.2 x 2.4-m sheet of plywood and put it on your roof rack, as in
the figure. You drive home at 60 km/h.

(a) If the board is perfectly aligned with the airflow, how thick is the boundary layer at the
end? (b) Estimate the drag if the flow remains laminar. (c) Estimate the drag for (smooth)
turbulent flow.

]

. . )
® ®

Fig. P7.25

Solution: For air take p = 1.2 kg/m® and u = 1.8E-5 kg/m's. Convert L = 2.4 m and U = 60
km/h = 16.67 m/s. Evaluate the Reynolds number, is it laminar or turbulent?

_PUL _ 1.2(16.67)(2.4)

Re
Lo 1.8E-5

=2.67E6 probably laminar + turbulent

(a) Evaluate the range of boundary-layer thickness between laminar and turbulent:

Laminar: é = 0 ~ >0 =3.06E-3, or: 6=7.3mm
L 24m +2.67E6
Turbulent: i ~ & =0.0193, or: 6=0.046m Ans. (a)

24  (2.67E6)"

(b, c) Evaluate the range of boundary-layer drag for both laminar and turbulent flow. Note
that, for flow over both sides, the appropriate area A = 2bL.:

1.328

V2.67E6

Fim =Cp §U2A ~ ( )%(16.67)2(2.4 x1.2x2 sides)=0.78 N Ans. (b)

E,,= &lw £(16.67)2 (2.4 x1.2%x2 sides)=3.6 N Ans. (c)
(2.67E6) 2

We see that the turbulent drag is about 4 times larger than laminar drag.
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P7.26 Air at 20°C and 1 atm flows past the flat plate in Fig. P7.26. The two pitot tubes are
each 2 mm from the wall. The manometer fluid is water at 20°C. If U = 15 m/s and L = 50 cm,
determine the values of the manometer readings h1 and h2 in cm. Assume laminar boundary-
layer flow.

e 2 mm 2 mm
< ¥
=
PR 2
_F -t
Fig. P7.26

Solution: For air at 20°C, take p = 1.2 kg/m® and u = 1.8E-5 kg/m's. The velocities u at
each pitot inlet can be estimated from the Blasius solution:

(1) n, =y[Ulvx,]"* = (0.002){15/[1.5E-5(0.5)]}'* = 2.83, Table 7.1: read f’ ~0.816
Then u, = Uf’ =15(0.816) ~12.25 m/s

(2) 1, =y[U~nx,1"* =20, f' =0.630, u,=1500.630)=~9.45m/s
2 2 2

Assume constant stream pressure, then the manometers are a measure of the local velocity u
at each position of the pitot inlet, so we can find Ap across each manometer:

Ap, = gul = —(12 25)2 =90 Pa = Ap gh, = (998-1.2)(9.81)h,, h, ~9.2mm

Ap, = gu = 72(9 45)> =54 Pa=(998-12)(9.8D)h,, or: h, ~55mm Ans.

P7.27 Consider the smooth square 10 by 10 cm duct in Fig. P7.27. The fluid is air at 20°C
and 1 atm, flowing at Vavg = 24 m/s. It is desired to increase the pressure drop over the 1-m
length by adding sharp 8-mm-long flat plates across the duct, as shown.
(a) Estimate the pressure drop if there are no plates. (b) Estimate how many plates are needed
to generate an additional 100 Pa of pressure drop.

Square Duct L=8mm

I
I
I
N—

->

V=24 m/s

e

Fig. P7.27
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Solution: For air, take p = 1.2 kg/m® and u = 1.8E-5 kg/m's. (a) Compute the duct Reynolds
number and hence the Moody-type pressure drop. The hydraulic diameter is 10 cm, thus

_ VD, _ (24 m/s)(0.1 m)

Re = 160000 (turbulent =0.0163
Db 0.000015 m%/s ( ) omoorh
L pV? 1. 1.2 ke/m>)(24 m/s)?
By = f 5= 00163 52 CRERIEEDE. 56 pa ans. (@
h A m 2

(b) To estimate the plate-induced pressure drop, first calculate the drag on one plate:

- (24)(0.008) 12800, C, = 1.328

0.000015 V12800

F=C, gvsz(z sides) = (0.01 17)%(24)2(0.1)(0.008)(2) = 0.00649 N

=0.0117,

Since the duct walls must support these plates, the effect is an additional pressure drop:

A 100 P Fotaes _ (000649 N)N
pextra = a= =

At (0.1 m)

plaes . N ~154 Ans.(b)

plates

P7.28 Consider laminar flow past the square-plate arrangements in the figure below.
Compared to the drag of a single plate (1), how much larger is the drag of four plates together
as in configurations (a) and (b)? Explain your results.

Fig. P7.28 (a) Fig. P7.28 (b)

Solution: The laminar formula Cp = 1.328/Rer.!’? means that Cp « L~V2. Thus:

@) F, =20 (4A)) = JSF, =2.83F, Ans. (a)

V2L,

const
VAL,

The plates near the trailing edge have less drag because their boundary layers are thicker
and their wall shear stresses are less. These configurations do not quadruple the drag.

(b) F, =

(4A,)=2.0F, Ans.(b)
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7.29 Air at 20°C and 1 atm flows at 3 m/s past a sharp flat plate 2 m wide and 1 m long.
(a) What is the wall shear stress at the end of the plate? (b) What is the air velocity at a point
4.5 mm normal to the end of the plate? (c) What is the total friction drag on the plate?

Solution: For at 20°C and 1 atm, take p = 1.2 kg/m3 and u = 1.8E-5 kg/m-s. Check the
Reynolds number to see if the flow is laminar or turbulent:

Re, - PYL _ A2BOA0) 44 99 Laminar
u 1.8E -5

We can proceed with our laminar-flow formulas:

Crymt = 0664 _ 0664 _ 00148: Tw=es Py2_ . 00148)(—)(3) = 0.0080 Pa Ans.(a)

JRe,  ~200000

At y = 4.5mm, the Blasius n = y‘/—— (0.0045m), |[———— 30
(1.5E -5)(1. 0)

Table 7.1: at p = 2.0, read 5 ~0.63, hence u = (0.63)(3.0) = 189" Ans.(b)
s

Finally, compute the drag for both sides of the plate, 4 = 2bL:

Cp = 28 0.00297,

4/200,000

or: F=CDgUz(sz)=(0.00297)(%)(3.0)2[2(2.0)(1.0)] = 0.064 N Ans.(c)

NOTE: For part (b), we never had to compute the boundary layer thickness, 6 = 11.2 mm.

P7.30 Flow straighteners are arrays of narrow ducts placed in wind tunnels to remove swirl
and other in-plane secondary velocities. They can be idealized as square boxes constructed by
vertical and horizontal plates, as in Fig. P7.30. The cross section is a by a, and the box length
is L. Assuming laminar flat-plate flow and an array of N x N boxes, derive a formula for (a)
the total drag on the bundle of boxes and (b) the effective pressure drop across the bundle.

Fig. P7.30
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Solution: For laminar flow over any one wall of size a by L, we estimate

1::one wall 1 328

- : ~0.664 (pul)"*U**a
(1/2)pU%aL. vV (pUL/u) (L)

one wall

Thus, for 4 walls and N2 boxes, Fotal = 2.656 N? (p,uL)l/2 U32a Ans. (a)

The pressure drop across the array is thus

 Fuu 2656

A array ( L)1/2U3/2 Ans. (b
Parray (Na)’ pu (b)

This is completely different from the predicted Ap for laminar flow through a long square
duct, as in Section 6.6:

Apduct=f££U2= M E BUZzM )
D, 2 pUa J\a)2 a

This has almost no relation to Answer (b) above, being the Ap for a long square duct filled with

boundary layer. Answer (b) is for a very short duct with thin wall boundary layers.

P7.31 Let the flow straighteners in Fig. P7.30 form an array of 20 x 20 boxes of size a = 4
cm and L = 25 cm. If the approach velocity is Uo = 12 m/s and the fluid is sea-level standard
air, estimate (a) the total array drag and (b) the pressure drop across the array. Compare with
Sec. 6.6.

Solution: For sea-level air, take p = 1.205 kg/m® and u = 1.78E-5 kg/m-s. The analytical
formulas for array drag and pressure drop are given above. Hence

E,. =2656N%(pul)"* U¥?a = 2.656(20)*[1.205(1.78E-5)(0.25)]"*(12)**(0.04)

array

or: F=4.09N (Re; =203000,0K,laminar) Ans. (a)

F __ 49  _64Pa Ans.(b)

(Na)>  [20(0.04)]

APyray =
This is a far cry from the (much lower) estimate we would have by assuming the array is a
bunch of long square ducts as in Sect. 6.6 (as shown in Prob. 7.30):

28 5ulLlU  28.5(1.78E-5)(0.25)(12)
Aplong duct = a2 = (004)2

~095Pa (notaccurate) Ans.
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*
P7.32 Whatis % at 7 = 5.0 for laminar flow on a flat plate?

Solution: From definition of the displacement thickness, given in Eq. (7.12)

5% = f[l—— dy = f”m“[l-%l\/vgxdn
fot-ile

and from Blasius,

5= 5.0
v
VX
o* 1 pn u
Therefore, — =) ™ l-=|d
5 =5 [ Ul 1

1
= g[n - f(m]y™

1
= g[nmax -f(m_, )l

from other references, 1,,,,, = 5.0, f(1,,.) = 3.28329

s
% =—(5.0-3.28329) = 0.34334  Ans.

1
5

P7.33 In Ref. 56 of Ch. 6, McKeon et al. propose new, supposedly more accurate
values for the turbulent log-law constants, Kk = 0.421 and B = 5.62. Use these constants, and
the one-seventh power-law, to repeat the analysis that led to the formula for turbulent
boundary layer thickness, Eq. (7.42). What is the approximate percent shift in é/x compared
to the textbook’s formula? Comment.

Solution: We can start with Eq. (7.37), modified for the new constants:

2 1 Cr\12
— = In[Re s (— + 5.62
(cf) 0anr e

Calculate and list a few values for Re, in the range 10* to 10”:

Re, 10* 10° 10° 107

¢ 0.00483 0.00313 0.00217 0.00159
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These new values fit, reasonably, the least-squares power-law ¢, = 0.0203 Re, 0190 Then
Eq. (7.41) modifies to

¢; = 0.0203Re"® = 2L L5y or: Re@ = 9.589Re0)
dx 72 d(Rex)
0 0.162
Integrate to ; W Ans.

X

This is very similar to Eq. (7.42), so the change is marginal. Actual calculations for &/x in
the range of Re = 10° to 10° show that the new formula averages ten per cent higher
thickness.

P7.34 The centerboard on a sailboat is 1 m long parallel to the flow and protrudes 2 m down
below the hull into seawater at 20°C. Using flat-plate theory for a smooth surface, estimate its
drag if the boat moves at 5 m/s. Assume Rey, = SES.

Solution: For seawater, take p = 1025 kg/m> and u = 1.07E-3 kg/(m's). Evaluate Rer, and
the drag.

_ pUL _ (1025 kg/m>)(5 m/s)(1 m)

u 1.07E - 3 kg/(m-s)
0031 1440  0.031 1440
Re!” Re, (4.79E6)" 4.79E6
= 0.00344 - 0.0003 = 0.00314

Re, =4.79FE6 (turbulent)

From Eq. (7.49a), C, =

1025

Fiue =Chp §v2bL(2 sides) = 0.00314(7)(5)2(1 m)(2 m)(2 sides) =161 N Ans.

P7.35 A flat plate of length L and height 6 is placed at a wall and is parallel to an approaching
boundary layer, as in Fig. P7.35. Assume that the flow over the plate is fully turbulent and that
the approaching flow is a one-seventh-power law

177

M(y)=Uo(

> |

Fig. P7.35
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Using strip theory, derive a formula for the drag coefficient of this plate. Compare this result
with the drag of the same plate immersed in a uniform stream Ub.

Solution: For a ‘strip’ of plate dy high and L long, subjected to flow u(y), the force is

0.031

P 2 .
dF = C, —u”(L dy)(2 sides), where C, = ———,
P Y D™ ouL/p)

combine into dF and integrate:

4]
dF =0.031pv" LN dy, or F=0.0310v" L[ [U, (/)" ]13/7 dy
0

The resultis F = 0.031(49/62)pv""L"U,"*"6  Ans.

This drag is (49/62), or 79%, of the force on the same plate immersed in a uniform
stream.

P7.36 An alternate analysis of turbulent flat-plate flow was given by Prandtl in 1927, using
a wall shear-stress formula from pipe flow

1/4

1, =0.0225pU° [~
Us

Show that this formula can be combined with Egs. (7.32) and (7.40) to derive the following
relations for turbulent flat-plate flow.

5037 00577 0072

= C R e —— [ —
1/5 f 1/5 D 1/5
x Re; Re, Re;

These formulas are limited to Rex between 5 x 10° and 10”.

Solution: Use Prandtl’s correlation for the left hand side of Eq. (7.32) in the text:

7, =0.02250U% (v/US) =pU2ﬁszZi lé , cancel pU? and rearrange:
v dx dx\ 72 P £

6"do =0.2314(v/U)"dx, Integrate: %55’4 =0.2314(v/U)"*x

Take the (5/4)th root of both sides and rearrange for the final thickness result:

o 037

8 =0.37(v/U)"*x*, T ReE @
5
2(0.022 X
Substitute 4(x) into 7,;: C; = %(UL) , or C;= ORO% Ans. (b)
: X e,
1
x\ 5 0.072

Finally, C,=[Cid|—|=—C;(atx=L)=———- Ans.(c
y D { f (L) 4 i ) eils (©
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7.37: Consider turbulent flow past a flat plate of width b and length L. What percentage of
the friction drag on the plate is carried by the rear half of the plate?

Solution: The formula for turbulent boundary drag on a plate is Eq. (7.45):

_2D(x) 0031 _ 0.0314""

~ = , or: D(x) = (const)x6/7
pU?bx  Rel7  (pUx)"’

Cp

At x = L, we obtain a force equal to (const) L°7. At x = L/2, we obtain a force equal to (const)
L7125 = (const)(0.552) L%, which is 55.2% of the total force. Thus the force on the trailing
half of the plate is only (100 — 55.2) = 44.8% of the total force on the plate. Unlike laminar
flow (29.3%), this is nearly half of the total, since turbulent shear drops off much slower
with x.

P7.38 Repeat Problem 7.28 for turbulent flow. Explain your results.

Solution: The turbulent formula C, = 0.031/Re;”” means that Cp « L™/, Thus:

@) F, = %(41&1) ~3.62F, Ans. (2)
1

(b) F, = %(Ml) ~328F, Ans. (b)
1

The trailing areas have slightly less shear stress, hence we are nearly quadrupling drag.

P7.39 A ship is 125 m long and has a wetted area of 3500 m?. Its propellers can deliver a
maximum power of 1.1 MW to seawater at 20°C. If all drag is due to friction, estimate the
maximum ship speed, in kn.

Solution: For seawater at 20°C, take o = 1025 kg/m?® and u = 0.00107 kg/m's. Evaluate

L _1025V(125 0.031 0.00217
Re, = pUL _ (125) (surely turbulent), Cp=—F-= 7
u 0.00107 er \
0217 (102
Power = FV = [0377(%) V2(3500)l V =1.1E6 watts, or V7 =2820

Solve for V=72 m/s=14 knots. Ans.

Check Re; = (1025)(7.2)(125)/(0.00107) = 8.6ES8, typical of ships.
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P7.40 Air at 20°C and 1 atm flows past a long flat plate, at the end of which is placed a
narrow scoop, as shown in Fig. P7.40. (a) Estimate the height & of the scoop if it is to extract
4 kg/s per meter of width into the paper. (b) Find the drag on the plate up to the inlet of the
scoop, per meter of width.

30 m/s

» lh?

TN\

6m <

K

Fig. P7.40

Solution: For air, take p = 1.2 kg/m3 and u = 1.8E-5 kg/m-'s. We assume that the scoop

does not alter the boundary layer at its entrance. (a) Compute the displacement thickness at x
=6m:

30 m/s)(6 5* 1(0.16) 0020
Re, = X o BUMSXOM) _ ;5 pg & 1/7\= —=0.00195
v 0000015 m2/s x 8\ Re7) T (12E7)
5] . = (6 m)(0.00195) = 0.0117 m

If 6* were zero, the flow into the scoop would be uniform: 4 kg/s/m = pUh = (1.2)(30)h,
which would make the scoop /4o = 0.111 m high. However, we lose the near-wall mass flow
pU6*, so the proper scoop height is equal to

h=ho+0*=0.111m+0.0117m~0.123m Ans. (a)

(b) Assume Ret = SES and use Eq. (7.49a) to estimate the drag:

Re, =12F7, C,= 0031 1440 =0.00302-0.00012 = 0.00290

77
Re," Re,

3
F,..=C, §V2bL = 0.0029(M] (30 m/s)*(1 m)(6 m)=94N  Ans. (b)

rag =

P7.41 Atmospheric boundary layers are very thick but follow formulas very similar to those
of flat-plate theory. Consider wind blowing at 10 m/s at a height of 80 m above a smooth
beach. Estimate the wind shear stress, in Pa, on the beach if the air is standard sea-level
conditions. What will the wind velocity striking your nose be if (a) you are standing up and
your nose is 170 cm off the ground; (b) you are lying on the beach and your nose is 17 cm off
the ground?
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Solution: For air at 20°C, take p = 1.2 kg/m® and u = 1.8E-5 kg/m's. Assume a smooth
beach and use the log-law velocity profile, Eq. (7.34), givenu = 10 m/s at y = 80 m:

u* u* K 041 1.5E-5

% %
u 10m/s 1 (yu )+B 1 1 ( 80u
v

)+5.0, solve u*=0.254 m/s

Hence Tt = pu*? =(1.2)(0.254)> =0.0772Pa  Ans.

surface

The log-law should be valid as long as we stay above y such that yu*/v > 50:

1 1.7(0.254
(@ y=17m: . In 7(0.254) +5, solve u,,,,=7.6 m Ans. (a)
0254 041 1.5E-5 ' s
1 17(0.254
(b) y=17 cm: d In 0.17(0.254) +5, solve u;;., =62 = Ans. (b)
0254 041 1.5E-5 s

The (b) part seems very close to the surface, but yu*/v = 2800 > 50, so the log-law is OK.

P7.42 A hydrofoil 50 cm long and 4 m wide moves at 28 kn in seawater at 20°C. Using flat-
plate theory with Rey = SES, estimate its drag, in N, for (a) a smooth wall and (b) a rough
wall, € = 0.3 mm.

28 knots
—_— b

L=50cm

Fig. P7.42

Solution: For seawater at 20°C, take p = 1025 kg/m> and u = 0.00107 kg/m-s. Convert 28
knots = 14.4 m/s. Evaluate Rer. = (1025)(14.4)(0.5)/(0.00107) = 6.9E6 (turbulent). Then

031 144
Smooth, Eq. (7.49a): Cj = ?{i - —O ~0.00306

L CL

Drag = Cp (g) U”bL(2 sides) = (0.00306) (%) (14.4)*(4)(0.5)(2) =1300N  Ans. (a)

L 500
Rough, —= 03" 1667, Fig.7.6 or Eq. (7.48b): C, =0.00742
€ .

Drag = (0.00742) (%) (14.4)*(4)(0.5)(2 sides) ~ 3150 N Ans. (b)
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P7.43 Hoerner (Ref. 12) plots the drag of a flag in winds, based on total surface area 2HL,
in the figure at right. A linear approximation is Cp = 0.01 + 0.05L/b,
as shown. Test Reynolds numbers were 1E6 or greater. (a) Explain why these values are
greater than for a flat plate.(b) Assuming sea-level air at 80 km/h, with area bL = 4 m?, find
the proper flag dimensions for which the total drag is approximately 400 N.

03 from
| b Hoerner's
C,. 1 book

02 : l/

2 ,_‘-',
| '
L / 0.016 1b/ft2
. b=4ft

ol _— V =80 fifsec
D/( L
NTY. . /b ——

.
A

o TCONSTA i
0 1 2 ! 3 4 )
0.01 +0.05 L/b

Fig. P7.43

Solution: (a) The drag is greater because the fluttering of the flag causes additional pressure
drag on the corrugated sections of the cloth. Ans. (a)

(b) For air take p = 1.225 kg/m> and u = 1.8E-5 kg/m's. Convert U = 80 km/h = 22.22 my/s.
Evaluate the drag force from the force coefficient:

F=cC Pura={001+005L 1.225 (22.22)*(2x 4.0 m*) =400 N
b p)\ 2

Solve for C,=0.165 or Lb=3.11

Combine this with the fact that L = 4 m? and we obtain

L=352m and b=113m Ans. (b)

P7.44 Repeat Prob. 7.22 with the sole /,/"’;undurymyer 0 mm
change that the pitot probe is now 10 oms /
mm from the wall (5 times higher). _’/ _'ﬂ;ﬂ

Show that the flow there cannot possibly : A =t

be laminar, and use smooth-wall ' |
turbulent-flow theory to estimate the
position x of the probe, in m.

Fig. P7.22

Solution: For air at 20°C, take p = 1.2 kg/m> and = 1.8E-5 kg/m's. For U = 20 m/s, it is

not possible for a laminar boundary-layer to grow to a thickness of 10 mm. Even at the
largest possible laminar Reynolds number of 3E6, the laminar thickness is only

Re, =3E6=12(20)x/1.8E-5, or x=2.25m,

5m RSic/2 _ (53(;62)15/)2 ~ 0.0065m = 6.5 mm <10 mm! Ans.
e

X
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Therefore the flow must be turbulent. Recall from Prob. 7.22 that the manometer reading was
h =16 mm of Meriam red oil, SG = 0.827. Thus

AP pyano = Apgh =[0.827(998) - 1.2](9.81)(0.016) = 129 Pa, u;, = 24p ~147 2
\/ o S

1/7 1/7
Then, at y = 20 mm, =1j—(')7z0.734z(%) =(10 mm) , or O0=87 mm

il
U 0

Thus, crudely, 6/x = 0.0.087m/x = 0.16/Rex!"7, solve for x=5.15m. Ans.

7.45 A light aircraft flies at 30 m/s in air at 20°C and 1 atm. Its wing is an NACA 0009 airfoil,
with a chord length of 150 cm and a very wide span (neglect aspect ratio effects). Estimate the

drag of this wing, per unit span length, (a) by flat plate theory; and (b) using the data from Fig.
7.25 for a=0°.

Solution: For air at 20°C and 1 atm, p = 1.2 kg/m’ and u = 1.8E-5 kg/m-s. First find the
Reynolds number, based on chord length, to see where we are:

3
Re, - pUc _ (1.2kg/m”)30m/ s)(1.5m) _ 3%10° curbulent
u 1.8E-5kg/m—-s

(a) For flat-plate theory, use Eq. (7.49a), which assumes transition at Rex = 500,000:

C. - 0.031 _ 1440  0.031 B 1440
d Rel /7 Rec (3E6)1/7 3E6

c

= 0.00368 — 0.00048 = 0.0032
Drag = Cd§U2(2bc) = (0.0032)(%)(30)2[2(1.0)(1.5)] - 5.2% Ans.(a)

(b) For the actual NACA 0009 airfoil, at Re. = 3E6, in Fig. 7.25, read C,; = 0.0065. Then
Drag = Cngz(bc) = (0.0065)(%)(30)2[(1.0)(1.5)] = 5.3% Ans.(b)

The two are quite close. A thin airfoil at low angles is similar to a flat plate.
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P7.46 I