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P7.1 An ideal gas, at 20°C and 1 atm, flows at 12 m/s past a thin flat plate.  At a position 
60 cm downstream of the leading edge, the boundary layer thickness is 5 mm.  Which of the 
13 gases in Table A.4 is this likely to be? 
 
Solution:  We are looking for the kinematic viscosity.  For a gas at low velocity and a short 
distance, we can guess laminar flow.  Then we can begin by trying Eq. (7.1a): 

δ
x
=
0.005m
0.6m

=
5.0
Rex

=
5.0
Vx / ν

=
5.0 ν

(12m / s)(0.6m)

Solve for ν = 2.0E − 5 m2 / s

 

The only gas in Table A.4 which matches this viscosity is the last one,  CH4.     Ans. 
But wait!  Is it laminar?  Check Rex = (12)(0.6)/(2.0E-5)  =  360,000.   Yes, OK. 

 
 
7.2 A gas at 20°C flows at 2.5 m/s past a smooth, sharp flat plate.  At x = 206 cm, the 
boundary layer thickness is 5 cm.  Which of the gases in Table A.4 is this most likely  
to be? 
 
Solution:  Distance x fairly long, but let’s begin by guessing a laminar boundary layer: 

       

   

δ
x
=

5cm
206cm

= 0.0243 ≈ 5
Rex

, solve Rex ≈ 42,400 (OK for laminar flow)

If this is correct, Rex = 42,400 =
Ux
ν

=
(2.5)(2.06)

ν
, solve ν ≈ 1.21E - 4 m2

s

 

This value of ν exactly matches helium in Table A.4.  It is not far from the value for 
hydrogen, but the helium result is right on the money.      Ans. 

Guessing turbulent flow, δ/x  =  0.0243  =  0.16/Rex
1/7, solve   Rex ≈ 541,000  (too small for 

transition to turbulence on a smooth wall).  This would give ν  ≈ 9.3E-6, about 15% greater 
than the kinematic viscosity of CO2.  But the Reynolds number is too low, so I reject this 
answer. 

 
 
P7.3 Equation (7.1b) assumes that the boundary layer on the plate is turbulent from the 
leading edge onward. Devise a scheme for determining the boundary-layer thickness more 
accurately when the flow is laminar up to a point Rex,crit and turbulent thereafter. Apply this 
scheme to computation of the boundary-layer thickness at x = 1.5 m in 40 m/s flow of air at 
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20°C and 1 atm past a flat plate. Compare your result with Eq. (7.1b). Assume Rex,crit ≈ 
1.2E6. 

 
Fig. P7.3 

Solution: Given the transition point xcrit, Recrit, calculate the laminar boundary layer thick-ness 
δc at that point, as shown above, δc/xc ≈ 5.0/Recrit1/2. Then find the “apparent” distance upstream, 
Lc, which gives the same turbulent boundary layer thickness,  Then begin 
xeffective at this “apparent origin” and calculate the remainder of the turbulent boundary layer as 
δ /xeff ≈ 0.16/Reeff1/7. Illustrate with a numerical example as requested. For air at 20°C, take ρ = 
1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. 

 

Finally, at x = 1.5 m, compute the effective distance and the effective Reynolds number: 

 

Compare with a straight all-turbulent-flow calculation from Eq. (7.1b): 

 

 

P7.4 A smooth ceramic sphere (SG = 2.6) is immersed in a flow of water at 20°C and 25 
cm/s. What is the sphere diameter if it is encountering (a) creeping motion, Red = 1; or (b) 
transition to turbulence, Red = 250,000? 
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Solution: For water, take ρ = 998 kg/m3 and µ = 0.001 kg/m⋅s. 
(a) Set Red equal to 1: 

 

(b) Similarly, at the transition Reynolds number, 

 

 

P7.5  A 1-mm-diameter steel sphere (SG = 7.6) is immersed in a flow of water at the speed 
of 0.2 m/s. Suppose we know that Red = 200, what would be the water temperature? 

Solution: Given V = 0.2 m/s and d = 1×10−3  m and Red = 200,  we have 

 
Red = 200 = ρVd

µ
 ①  

Substitute V and d into ①, we then have 

ρ
µ
= 1,000,000  

From table A.2, at T = 20°C, 

ρ
µ
= 995,015  

and at T = 30°C, 
ρ
µ
= 1,246,558  

By interpolation, we would have water temperature equals to 20.2°C. Ans. 
 

P7.6 SAE 30 oil at 20°C flows at 0.05 m3/s from a reservoir into a 15-cm-diameter pipe. 
Use flat-plate theory to estimate the position x where the pipe-wall boundary layers meet 
in the center. Compare with Eq. (6.5), and give some explanations for the discrepancy. 

Solution: For SAE 30 oil at 20°C, take ρ = 891 kg/m3 and µ = 2.9 × 10–1 kg/m⋅s. The 
average velocity and pipe Reynolds number are: 

Vavg =
Q
A
=

0.05
(π/4)(0.15)2 = 2.83 m

s
, ReD =

ρVD
µ

=
891(2.83)(0.15)

0.29
=1304 (laminar)  
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Using Eq. (7.1a) for laminar flow, find “xe” where δ = D/2 = 7.5 cm: 

xe ≈
δ2ρV
25µ

=
(0.075)2(891)(2.83)

25(0.29)
≈ 1.96 m Ans. (flat-plate boundary layer estimate)  

This is far from the truth, much too short. Equation (6.5) for laminar pipe flow predicts 

xe = 0.06D ReD = 0.06(0.15 m)(1304) ≈ 11.7 m Alternate Ans.  

The entrance flow is accelerating, a favorable pressure gradient, as the core velocity 
increases from V to 2V, and the accelerating boundary layer is much thinner and takes 
much longer to grow to the center. Ans. 

 

P7.7 For the laminar parabolic boundary-layer profile of Eq. (7.6), compute the shape factor 
“H” and compare with the exact Blasius-theory result, Eq. (7.31). 
 
Solution: Given the profile approximation u/U ≈ 2η − η2, where η = y/δ, compute 

θ =
u
U

1− u
U







dy =
0

δ

∫ δ (2η −
0

1

∫ η2 )(1− 2η +η2)dη = 2
15
δ

δ* = 1− u
U







dy =
0

δ

∫ δ (1− 2η +η2 )
0

1

∫  dη = 1
3
δ

 

Hence H = δ  ∗/θ = (δ /3)/(2δ /15) ≈ 2.50 (compared to 2.59 for Blasius solution) 
 

P7.8 Air at 20°C and 1 atm enters a 40-cm-square duct as in Fig. P7.8. Using the 
“displacement thickness” concept of Fig. 7.4, estimate (a) the mean velocity and (b) the mean 
pressure in the core of the flow at the position x = 3 m. (c) What is the average gradient, in 
Pa/m, in this section? 

 
Fig. P7.8 

Solution: For air at 20°C, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. Using laminar 
boundary-layer theory, compute the displacement thickness at x = 3 m: 
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The pressure change in the (frictionless) core flow is estimated from Bernoulli’s equation: 

 

 

The average pressure gradient is Δp/x = (−0.44 Pa/3.0 m) ≈ −0.15 Pa/m Ans. (c) 
 

P7.9 Air, ρ =1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s, flows at 10 m/s past a flat plate. At the 
trailing edge of the plate, the following velocity profile data are measured: 
 
y, mm: 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 
u, m/s: 0 1.75 3.47 6.58 8.70 9.68 10.0 10.0 
u(U − u), m2/s: 0 14.44 22.66 22.50 11.31 3.10 0.0 0.0 

 
If the upper surface has an area of 0.6 m2, estimate, using momentum concepts, the friction 
drag, in newtons, on the upper surface. 

Solution: Make a numerical estimate of drag from Eq. (7.2): F = ρb ∫ u(U − u)dy. We have 
added the numerical values of u(U − u) to the data above. Using the trapezoidal rule between 
each pair of points in this table yields 

 

The drag is approximately F = 1.2b(0.061) = 0.073b newtons or 0.073 N/m. Ans. 
 

7.10 Repeat the flat-plate momentum analysis of Sec. 7.2 by replacing Eq. (7.6) with the 
simple but unrealistic linear velocity profile suggested by Schlichting [1]: 

 

 Compute momentum-integral estimates of  cf,  θ/x,  δ*/x, and  H. 
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Solution:  Carry out the same integrations as Section 7.2.  Results are less accurate: 
 

     

Substitute these results back for the following inaccurate estimates: 
 

           

 

P7.11 Repeat Prob. 7.10, using the polynomial profile suggested by K. Pohlhausen in 1921: 

 

Does this profile satisfy the boundary conditions of laminar flat-plate flow? 

Solution: Pohlhausen’s quadratic profile satisfies no-slip at the wall, a smooth merge with u 
→ U as y → δ, and, further, the boundary-layer curvature condition at the wall. From Eq. 
(7.19b), 

 

 
This profile gives the following integral approximations: 

, integrate to obtain: 
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P7.12 Air at 20°C and 1 atm flows at 2 m/s past a sharp flat plate. Assuming that the 
Kármán parabolic-profile analysis, Eqs. (7.6−7.10), is accurate, estimate (a) the local velocity 
u; and (b) the local shear stress τ at the position (x, y) = (50 cm, 5 mm). 

Solution: For air, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. First compute Rex = 
(1.2)(2)(0.5)/(1.8E-5) = 66667, and δ(x) ≈ (0.5m)(5.5)/(66667)1/2 = 0.01065 m. The 
location we want is y/δ = 5 mm/10.65 mm = 0.47, and Eq. (7.6) predicts local velocity: 

 

The local shear stress at this y position is estimated by differentiating Eq. (7.6): 

 

 

P7.13 The velocity profile shape u/U ≈ 1 − exp(−4.605y/δ )  is a smooth curve with u = 0 at y 
= 0 and u = 0.99U at y = δ and thus would seem to be a reasonable substitute for 
the parabolic flat-plate profile of Eq. (7.3). Yet when this new profile is used in the integral 
analysis of Sec. 7.3, we get the lousy result , which is 80 percent high. What is 
the reason for the inaccuracy? [Hint: The answer lies in evaluating the laminar boundary-
layer momentum equation (7.19b) at the wall, y = 0.] 

Solution: This profile satisfies no-slip at the wall and merges very smoothly with u → U at 
the outer edge, but it does not have the right shape for flat-plate flow. It does not satisfy the 
zero curvature condition at the wall (see Prob. 7.10 for further details): 

Evaluate ∂ 2u
∂y2 |y=0≈ −

4.605
δ









2

U ≈ −
21.2U
δ 2 ≠ 0 by a long measure!  

The profile has a strong negative curvature at the wall and simulates a favorable pressure 
gradient shape. Its momentum and displacement thickness are much too small. 

 
 
P7.14  The velocity distribution profile is given as u/U = 3(y/δ ) − 2(y/δ )2. How much does 
displacement thickness of the profile deviate from exact solution of laminar flat-plate flow? 

Solution: Following the procedure presented in sec. 7.2, the velocity profile is given as 

  

u
U
= 3 y

δ









− 2 y

δ











2

= 3η − 2η2  
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The wall shear stress is 

   

τw = µ
∂u
∂y y=0

=
µU
δ

d(u / U )
d( y / δ) y /δ=0

=
µv
δ

d(u / U )
dη η=0

∴ τw =
µU
δ

d
dη

(3η − 2η2 ) = 3µU
δ

  ①

 

and from the momentum integral equation 

   

τw = ρU 2 dδ
dx

u
U0

1
∫ 1− u

U








dη

= ρU 2 dδ
dx

(3η − 2η2 )
0

1
∫ (1− 3η + 2η2 )dη

= ρU 2 dδ
dx

(3η −11η2 +12η3 + 4η4 )
0

1
∫ dη

∴ τw = 0.033ρU 2 dδ
dx

②

 

 ① = ②,  we have 

   

3µU
δ

= 0.033ρU 2 dδ
dx

δdδ = 90µ
ρU

dx  ③

 

Integrate ③, 

δ2

2
=
90µ
ρU

x +C  

At x = 0, δ  = 0,  then C = 0  

  
∴

δ
x
=

13
Rex

 

This solution is so different from exact solution. This given velocity profile is wrong. 
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P7.15 Derive modified forms of the laminar boundary-layer equations for flow along the 
outside of a circular cylinder of constant R, as in Fig. P7.15. Consider the two cases (a) 

 and (b) δ ≈ R. What are the boundary conditions? 

Solution: The Navier-Stokes equations for cylindrical coordinates are given in Appendix 
D, with “x” in the Fig. P7.15 denoting the axial coordinate “z.” Assume “axisymmetric” 
flow, that is, vθ = 0 and ∂/∂θ = 0 everywhere. The boundary layer assumptions are: 

 

Fig. P7.15 

 hence r-momentum (Eq. D-5) becomes  

Thus p ≈ p(x) only, and for a long straight cylinder, p ≈ constant and U ≈ constant 

Then, with ∂ p /∂x = 0, the x-momentum equation (D-7 in the Appendix) becomes 

 

 

For thick boundary layers (part b) the radial geometry is important. 
If, however, the boundary layer is very thin,  then r = R + y ≈ R itself, and we can use 
(x, y) coordinates: 

 

 

Thus a thin boundary-layer on a cylinder is exactly the same as flat-plate (Blasius) flow. 
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P7.16 Show that the two-dimensional laminar-flow pattern with dp/dx = 0, 

 

is an exact solution to the boundary-layer equations (7.19). Find the value of the constant C 
in terms of the flow parameters. Are the boundary conditions satisfied? What might this flow 
represent? 

 

Fig. P7.16 

Solution: Substitute these (u,v) into the x-momentum equation (7.19b) with ∂u/∂x = 0: 

 

If the constant is negative, u does not go to ∞ and the solution represents laminar boundary-
layer flow past a flat plate with wall suction, vo ≤ 0 (see figure). It satisfies 

at y = 0: u = 0 (no slip) and v = vo (suction); as y → ∞, u → Uo (freestream) 

The thickness δ, where u ≈ 0.99Uo, is defined by exp(ρvoδ /µ) = 0.01, or δ = −4.6µ /ρvo. 
 

P7.17 Discuss whether fully developed 
laminar incompressible flow between 
parallel plates, Eq. (4.143) and Fig. 4.16b, 
represents an exact solution to the 
boundary-layer equations (7.19) and the 
boundary conditions (7.20). In what sense, 
if any, are duct flows also boundary-layer 
flows?  

Fig. 4.16 
 
Solution: The analysis for flow between parallel plates leads to Eq. (4.143): 

 

It is indeed a “boundary layer,” with  and ∂ p/∂ y ≈ 0. The “freestream” is the 
centerline velocity, umax = (−dp/dx)(h2/2µ). The boundary layer does not grow because it is 
constrained by the two walls. The entire duct is filled with boundary layer. Ans. 
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P7.18 A thin flat plate 55 by 110 cm is 
immersed in a 6-m/s stream of SAE 10 oil at 
20°C. Compute the total friction drag if the 
stream is parallel to (a) the long side and 
(b) the short side.  

  
Solution: For SAE 30 oil at 20°C, take ρ = 891 kg/m3 and µ = 0.29 kg/m⋅s. 

 

 

The drag is 41% more if we align the flow with the short side: 

 
 

7.19 Consider laminar flow past a flat plate of width b and length L.  What percentage of 
the friction drag on the plate is carried by the rear half of the plate? 

Solution:  The formula for laminar boundary drag on a plate is Eq. (7.26):  

 

At x = L, we obtain a force equal to (const) L1/2.  At x = L/2, we obtain a force equal to (const) 
L1/2/√2, which is 70.7% of the total force.  Thus the force on the trailing half of the plate is 
only (100 – 70.7) = 29.3% of the total force on the plate. 

 

P7.20 The approximate answers to Prob. 7.12 are u ≈ 1.44 m/s and τ ≈ 0.0036 Pa at x = 50 
cm and y = 5 mm. [Do not reveal this to your friends who are working on Prob. 7.12.] Repeat 
that problem by using the exact Blasius flat-plate boundary-layer solution. 

Solution: (a) Calculate the Blasius variable η (Eq. 7.21), then find f ′ = u/U at that position: 

 

(b) Differentiate Eq. (7.21) to find the local shear stress: 
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P7.21      Air at 20°C and 1 atm flows at 15 m/s past a thin flat plate whose area (bL) is 
2.2 m2.  If the total friction drag is 1.3 N, what are the length and width of the plate? 
 
Solution:  For air at 20°C and 1 atm, take ρ = 1.2 kg/m3 and µ = 1.8 × 10−5 N·s/m2.  Low 
speed air, not too big a plate:  Guess laminar flow and check this later.  Use Eq. (7.27): 

   

CD =
1.328

ReL

(one side) hence F = CD
ρ
2

V 2 2bL , where bL = 2.2 m2

Apply data : F = 1.3 N =
1.328 1.8E −5

(1.2)(15)L
1.2
2









(15)22bL

Solve : b L = 3.63 =
2.2
L

L , or : L = 0.61 L = 0.37 m , b = 6.0 m Ans.

 

Check the Reynolds number: ReL = (1.2)(15)(0.37)/(1.8E−5) = 370,000.  Laminar, OK. 
 

P7.22 Air at 20°C and 1 atm flows at 20 m/s past the flat plate in Fig. P7.22. A pitot stagnation 
tube, placed 2 mm from the wall, develops a manometer head h = 16 mm of Meriam red oil, 
SG = 0.827. Use this information to estimate the downstream position x of the pitot tube. 
Assume laminar flow. 

 
Fig. P7.22 

 
Solution: For air at 20°C, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. Assume constant 
stream pressure, then the manometer can be used to estimate the local velocity u at the 
position of the pitot inlet: 

 

 

Now, with u known, the Blasius solution uses u/U to determine the position η: 

 

Check Rex = (20)(0.908)/(1.5E−5) ≈ 1.21E6, OK, laminar if the flow is very smooth. 
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P7.23 For the experimental set-up of Fig. P7.22, suppose the stream velocity is unknown 
and the pitot stagnation tube is traversed across the boundary layer of air at 1 atm and 20°C. 
The manometer fluid is Meriam red oil, and the following readings are made: 

y, mm: 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
h, mm: 1.2 4.6 9.8 15.8 21.2 25.3 27.8 29.0 29.7 29.7 

Using this data only (not the Blasius theory) estimate (a) the stream velocity, (b) the 
boundary layer thickness, (c) the wall shear stress, and (d) the total friction drag between the 
leading edge and the position of the pitot tube. 
 
Solution: As in Prob. 7.22, the air velocity u = [2(ρoil − ρair)gh/ρair]1/2. For the oil, take ρoil 
= 0.827(998) = 825 kg/m3. For air, ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. (a, b) We see that h 
levels out to 29.7 mm at y = 4.5 mm. Thus 

 

(c) The wall shear stress is estimated from the derivative of velocity at the wall: 

 

where we have calculated unear-wall = [2(825 − 1.2)(9.81)(0.0012)/1.2]1/2 = 4.02 m/s. 
(d) To estimate drag, first see if the boundary layer is laminar. Evaluate Reδ  : 

 

This is a little high, maybe, but let us assume a smooth wall, therefore laminar, in which case 
the drag is twice the local shear stress times the wall area. From Prob. 7.22, we estimated the 
distance x to be 0.908 m. Thus 

 
 

P7.24 For the Blasius flat-plate problem, Eqs. (7.21) to (7.23), does a two-dimensional 
stream function ψ(x, y) exist? If so, determine the correct dimensionless form for ψ, assuming 
that ψ = 0 at the wall, y = 0. 

Solution: A stream function ψ(x, y) does exist because the flow satisfies the two-
dimensional equation of continuity, Eq. (7.19a). That is, u = ∂ψ/∂y and v = −∂ψ/∂x. Given 
the “Blasius” form of u, we may integrate to find ψ : 

 

 

The integration assumes that ψ = 0 at y = 0, which is very convenient. 
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P7.25 Suppose you buy a 1.2 × 2.4-m sheet of plywood and put it on your roof rack, as in 
the figure. You drive home at 60 km/h. 
(a) If the board is perfectly aligned with the airflow, how thick is the boundary layer at the 
end? (b) Estimate the drag if the flow remains laminar. (c) Estimate the drag for (smooth) 
turbulent flow. 

 
Fig. P7.25 

Solution: For air take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. Convert L = 2.4 m and U = 60 
km/h = 16.67 m/s. Evaluate the Reynolds number, is it laminar or turbulent? 

ReL =
ρUL
µ

=
1.2(16.67)(2.4)

1.8E−5
= 2.67E6 probably laminar + turbulent  

(a) Evaluate the range of boundary-layer thickness between laminar and turbulent: 

 Laminar: δ
L
=

δ
2.4 m

≈
5.0

2.67E6
= 3.06E − 3, or: δ ≈ 7.3 mm  

Turbulent: δ
2.4

≈
0.16

(2.67E6)1/7 = 0.0193, or: δ ≈ 0.046 m Ans. (a)  

(b, c) Evaluate the range of boundary-layer drag for both laminar and turbulent flow. Note 
that, for flow over both sides, the appropriate area A = 2bL: 

Flam = CD
ρ
2
U 2A ≈ 1.328

2.67E6









1.2
2

(16.67)2(2.4 ×1.2 × 2 sides) = 0.78 N Ans. (b)  

Fturb ≈
0.031

(2.67E6)1/7










1.2
2

(16.67)2(2.4 ×1.2 × 2 sides) = 3.6 N Ans. (c)  

We see that the turbulent drag is about 4 times larger than laminar drag. 
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P7.26 Air at 20°C and 1 atm flows past the flat plate in Fig. P7.26. The two pitot tubes are 
each 2 mm from the wall. The manometer fluid is water at 20°C. If U = 15 m/s and L = 50 cm, 
determine the values of the manometer readings h1 and h2 in cm. Assume laminar boundary-
layer flow. 

 
Fig. P7.26 

Solution: For air at 20°C, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. The velocities u at 
each pitot inlet can be estimated from the Blasius solution: 

 

 

Assume constant stream pressure, then the manometers are a measure of the local velocity u 
at each position of the pitot inlet, so we can find Δp across each manometer: 

 

 
 

P7.27 Consider the smooth square 10 by 10 cm duct in Fig. P7.27. The fluid is air at 20°C 
and 1 atm, flowing at Vavg = 24 m/s. It is desired to increase the pressure drop over the 1-m 
length by adding sharp 8-mm-long flat plates across the duct, as shown. 
(a) Estimate the pressure drop if there are no plates. (b) Estimate how many plates are needed 
to generate an additional 100 Pa of pressure drop. 

 

Fig. P7.27 
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Solution: For air, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. (a) Compute the duct Reynolds 
number and hence the Moody-type pressure drop. The hydraulic diameter is 10 cm, thus 

 

 

(b) To estimate the plate-induced pressure drop, first calculate the drag on one plate: 

 

 

Since the duct walls must support these plates, the effect is an additional pressure drop: 

 

 

P7.28 Consider laminar flow past the square-plate arrangements in the figure below. 
Compared to the drag of a single plate (1), how much larger is the drag of four plates together 
as in configurations (a) and (b)? Explain your results. 

 
 Fig. P7.28 (a) Fig. P7.28 (b) 

Solution: The laminar formula CD = 1.328/ReL1/2 means that CD ∝ L−1/2. Thus: 

 

 

The plates near the trailing edge have less drag because their boundary layers are thicker 
and their wall shear stresses are less. These configurations do not quadruple the drag. 
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7.29 Air at 20°C and 1 atm flows at 3 m/s past a sharp flat plate 2 m wide and 1 m long.   
(a) What is the wall shear stress at the end of the plate?  (b) What is the air velocity at a point   
4.5 mm normal to the end of the plate?  (c) What is the total friction drag on the plate? 
 
Solution:  For at 20°C and 1 atm, take ρ = 1.2 kg/m3 and µ = 1.8E-5 kg/m-s.  Check the 
Reynolds number to see if the flow is laminar or turbulent: 
 

                     

 
We can proceed with our laminar-flow formulas: 
 

 

Finally, compute the drag for both sides of the plate, A = 2bL: 
 

         

 
NOTE:  For part (b), we never had to compute the boundary layer thickness, δ  ≈  11.2 mm. 

 

P7.30 Flow straighteners are arrays of narrow ducts placed in wind tunnels to remove swirl 
and other in-plane secondary velocities. They can be idealized as square boxes constructed by 
vertical and horizontal plates, as in Fig. P7.30. The cross section is a by a, and the box length 
is L. Assuming laminar flat-plate flow and an array of N × N boxes, derive a formula for (a) 
the total drag on the bundle of boxes and (b) the effective pressure drop across the bundle. 
 

 

Fig. P7.30
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Solution: For laminar flow over any one wall of size a by L, we estimate 
 

 

 
Thus, for 4 walls and N2 boxes, Ftotal ≈ 2.656 N2 (ρµL)1/2 U3/2 a Ans. (a) 

 
The pressure drop across the array is thus 

 

This is completely different from the predicted Δp for laminar flow through a long square 
duct, as in Section 6.6: 

 

This has almost no relation to Answer (b) above, being the Δp for a long square duct filled with 
boundary layer. Answer (b) is for a very short duct with thin wall boundary layers. 

 

P7.31 Let the flow straighteners in Fig. P7.30 form an array of 20 × 20 boxes of size a = 4 
cm and L = 25 cm. If the approach velocity is Uo = 12 m/s and the fluid is sea-level standard 
air, estimate (a) the total array drag and (b) the pressure drop across the array. Compare with 
Sec. 6.6. 
 
Solution: For sea-level air, take ρ = 1.205 kg/m3 and µ = 1.78E−5 kg/m⋅s. The analytical 
formulas for array drag and pressure drop are given above. Hence 

 

 

 

This is a far cry from the (much lower) estimate we would have by assuming the array is a 
bunch of long square ducts as in Sect. 6.6 (as shown in Prob. 7.30): 
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P7.32  What is 
 
δ *
δ

 at η = 5.0 for laminar flow on a flat plate? 

Solution: From definition of the displacement thickness, given in Eq. (7.12) 

  

δ* = 1− u
U









0

δ
∫  dy = 1− u

U








0

ηmax∫  
ν x

U
 dη

=
ν x

U
1− u

U








0

ηmax∫  dη

 

and from Blasius, 
δ =

5.0
U
νx

 

  

Therefore, δ *
δ
=

1
5

1− u
U









0

ηmax∫  dη

=
1
5

[η − f (η)]0
ηmax

=
1
5

[ηmax − f (ηmax )]

 

from other references, ηmax = 5.0,  f (ηmax ) = 3.28329  

∴
δ *
δ

=
1
5
(5.0 − 3.28329) = 0.34334 Ans.  

 

P7.33      In Ref. 56 of Ch. 6, McKeon et al. propose new, supposedly more accurate 
values for the turbulent log-law constants, κ = 0.421 and B = 5.62.  Use these constants, and 
the one-seventh power-law, to repeat the analysis that led to the formula for turbulent 
boundary layer thickness, Eq. (7.42).  What is the approximate percent shift in δ/x compared 
to the textbook’s formula?  Comment. 
 
Solution:  We can start with Eq. (7.37), modified for the new constants: 

( 2
c f
)1/2 =

1
0.421

ln[Reδ (
c f
2
)1/2 ] + 5.62  

Calculate and list a few values for Reδ in the range 104 to 107: 

Reδ 104 105 106 107 
cf 0.00483 0.00313 0.00217 0.00159 
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These new values fit, reasonably, the least-squares power-law   cf  ≈ 0.0203 Reδ -0.160.   Then 
Eq. (7.41) modifies to 

c f = 0.0203Reδ
−0.160 = 2 d

dx
( 7
72
δ) , or : Reδ

−0.160 = 9.58 d(Reδ )
d(Rex )

Integrate to δ
x
≈

0.162
Rex

0.138 Ans.
 

This is very similar to Eq. (7.42), so the change is marginal.  Actual calculations for δ/x  in 
the range of Rex = 106 to 109 show that the new formula averages ten per cent higher 
thickness. 

 

P7.34 The centerboard on a sailboat is 1 m long parallel to the flow and protrudes 2 m down 
below the hull into seawater at 20°C. Using flat-plate theory for a smooth surface, estimate its 
drag if the boat moves at 5 m/s. Assume Rex,tr = 5E5. 

Solution: For seawater, take ρ = 1025 kg/m3 and µ = 1.07E−3 kg/(m⋅s). Evaluate ReL and 
the drag. 

ReL =
ρUL
µ

=
(1025 kg/m3)(5 m/s)(1 m)

1.07E − 3 kg/(m·s)
= 4.79E6 (turbulent)

From Eq. (7.49a), CD =
0.031
ReL

1/7 −
1440
ReL

=
0.031

(4.79E6)1/7 −
1440

4.79E6

= 0.00344 − 0.0003 = 0.00314

 

Fdrag = CD
ρ
2
V 2bL(2 sides) = 0.00314 1025

2






(5)2 (1 m)(2 m)(2 sides) ≈ 161 N Ans.  

 

P7.35 A flat plate of length L and height δ is placed at a wall and is parallel to an approaching 
boundary layer, as in Fig. P7.35. Assume that the flow over the plate is fully turbulent and that 
the approaching flow is a one-seventh-power law 

 

 

Fig. P7.35 
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Using strip theory, derive a formula for the drag coefficient of this plate. Compare this result 
with the drag of the same plate immersed in a uniform stream Uo. 

Solution: For a ‘strip’ of plate dy high and L long, subjected to flow u(y), the force is 

 

 

This drag is (49/62), or 79%, of the force on the same plate immersed in a uniform 
stream. 

 

P7.36 An alternate analysis of turbulent flat-plate flow was given by Prandtl in 1927, using 
a wall shear-stress formula from pipe flow 

 

Show that this formula can be combined with Eqs. (7.32) and (7.40) to derive the following 
relations for turbulent flat-plate flow. 

 

These formulas are limited to Rex between 5 × 105 and 107. 
 
Solution: Use Prandtl’s correlation for the left hand side of Eq. (7.32) in the text: 

 

Take the (5/4)th root of both sides and rearrange for the final thickness result: 
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7.37: Consider turbulent flow past a flat plate of width b and length L.  What percentage of 
the friction drag on the plate is carried by the rear half of the plate? 

Solution:  The formula for turbulent boundary drag on a plate is Eq. (7.45):  
 

              

 
At x = L, we obtain a force equal to (const) L6/7.  At x = L/2, we obtain a force equal to (const) 
L6/7/26/7 =  (const)(0.552) L6/7, which is 55.2% of the total force.  Thus the force on the trailing 
half of the plate is only (100 – 55.2) = 44.8% of the total force on the plate.  Unlike laminar 
flow (29.3%), this is nearly half of the total, since turbulent shear drops off much slower  
with x. 

 

P7.38 Repeat Problem 7.28 for turbulent flow. Explain your results. 

Solution: The turbulent formula  means that CD ∝ L−1/7. Thus: 

 

 

The trailing areas have slightly less shear stress, hence we are nearly quadrupling drag. 
 

P7.39 A ship is 125 m long and has a wetted area of 3500 m2. Its propellers can deliver a 
maximum power of 1.1 MW to seawater at 20°C. If all drag is due to friction, estimate the 
maximum ship speed, in kn. 

Solution: For seawater at 20°C, take ρ = 1025 kg/m3 and µ = 0.00107 kg/m⋅s. Evaluate 

 

 

Check ReL = (1025)(7.2)(125)/(0.00107)  =  8.6E8, typical of ships. 
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P7.40 Air at 20°C and 1 atm flows past a long flat plate, at the end of which is placed a 
narrow scoop, as shown in Fig. P7.40. (a) Estimate the height h of the scoop if it is to extract 
4 kg/s per meter of width into the paper. (b) Find the drag on the plate up to the inlet of the 
scoop, per meter of width. 

 

Fig. P7.40 

Solution: For air, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. We assume that the scoop 
does not alter the boundary layer at its entrance. (a) Compute the displacement thickness at x 
= 6 m: 

 

If δ  ∗ were zero, the flow into the scoop would be uniform: 4 kg/s/m = ρUh = (1.2)(30)h, 
which would make the scoop ho = 0.111 m high. However, we lose the near-wall mass flow 
ρUδ  ∗, so the proper scoop height is equal to 

h = ho + δ  ∗ = 0.111 m + 0.0117 m ≈ 0.123 m Ans. (a) 

(b) Assume Retr = 5E5 and use Eq. (7.49a) to estimate the drag: 

 

 

 

P7.41 Atmospheric boundary layers are very thick but follow formulas very similar to those 
of flat-plate theory. Consider wind blowing at 10 m/s at a height of 80 m above a smooth 
beach. Estimate the wind shear stress, in Pa, on the beach if the air is standard sea-level 
conditions. What will the wind velocity striking your nose be if (a) you are standing up and 
your nose is 170 cm off the ground; (b) you are lying on the beach and your nose is 17 cm off 
the ground? 
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Solution: For air at 20°C, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. Assume a smooth 
beach and use the log-law velocity profile, Eq. (7.34), given u = 10 m/s at y = 80 m: 

 

The log-law should be valid as long as we stay above y such that yu*/ν > 50: 

 

 

The (b) part seems very close to the surface, but yu*/ν ≈ 2800 > 50, so the log-law is OK. 

 

P7.42 A hydrofoil 50 cm long and 4 m wide moves at 28 kn in seawater at 20°C. Using flat-
plate theory with Retr = 5E5, estimate its drag, in N, for (a) a smooth wall and (b) a rough 
wall, ε = 0.3 mm. 

 

Fig. P7.42 

Solution: For seawater at 20°C, take ρ = 1025 kg/m3 and µ = 0.00107 kg/m⋅s. Convert 28 
knots = 14.4 m/s. Evaluate ReL = (1025)(14.4)(0.5)/(0.00107) ≈ 6.9E6 (turbulent). Then 
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P7.43 Hoerner (Ref. 12) plots the drag of a flag in winds, based on total surface area 2bL, 
in the figure at right. A linear approximation is CD ≈ 0.01 + 0.05L/b, 
as shown. Test Reynolds numbers were 1E6 or greater. (a) Explain why these values are 
greater than for a flat plate.(b) Assuming sea-level air at 80 km/h, with area bL = 4 m2, find 
the proper flag dimensions for which the total drag is approximately 400 N. 

 
Fig. P7.43 

Solution: (a) The drag is greater because the fluttering of the flag causes additional pressure 
drag on the corrugated sections of the cloth. Ans. (a) 
(b) For air take ρ = 1.225 kg/m3 and µ = 1.8E−5 kg/m⋅s. Convert U = 80 km/h = 22.22 m/s. 
Evaluate the drag force from the force coefficient: 

F = CD
ρ
2
U 2A = 0.01+ 0.05 L

b








1.225
2







(22.22)2(2 × 4.0 m2 ) = 400 N

Solve for CD = 0.165 or L/b ≈ 3.11
 

Combine this with the fact that bL = 4 m2 and we obtain 

L ≈ 3.52 m and b ≈ 1.13 m Ans. (b)  
 

P7.44 Repeat Prob. 7.22 with the sole 
change that the pitot probe is now 10 
mm from the wall (5 times higher). 
Show that the flow there cannot possibly 
be laminar, and use smooth-wall 
turbulent-flow theory to estimate the 
position x of the probe, in m.  

Fig. P7.22 

Solution: For air at 20°C, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. For U = 20 m/s, it is 
not possible for a laminar boundary-layer to grow to a thickness of 10 mm. Even at the 
largest possible laminar Reynolds number of 3E6, the laminar thickness is only 

Rex = 3E6 = 1.2(20)x /1.8E - 5, or x = 2.25 m,  

 

δ ≈
5x

Rex
1/2 =

5(2.25)
(3E6)1/2 ≈ 0.0065m = 6.5 mm < 10 mm! Ans.  

10 mm 



26  

Therefore the flow must be turbulent. Recall from Prob. 7.22 that the manometer reading was 
h = 16 mm of  Meriam red oil, SG = 0.827. Thus 

Δpmano = Δρgh = [0.827(998)−1.2](9.81)(0.016) ≈ 129 Pa, upitot =
2Δp
ρ

≈ 14.7 m
s

 

 
Then, at y = 20 mm, u

U
=

14.7
20

≈ 0.734 ≈ y
δ










1/7

=
10 mm
δ











1/7

, or δ ≈ 87 mm  

Thus, crudely, δ /x = 0.0.087m/x ≈ 0.16/Rex1/7, solve for x ≈  5.15 m. Ans. 

 

7.45 A light aircraft flies at 30 m/s in air at 20°C and 1 atm.  Its wing is an NACA 0009 airfoil, 
with a chord length of 150 cm and a very wide span (neglect aspect ratio effects).  Estimate the 
drag of this wing, per unit span length, (a) by flat plate theory; and   (b) using the data from Fig. 
7.25 for α = 0°. 
 
Solution:  For air at 20°C and 1 atm, ρ  = 1.2 kg/m3 and µ  = 1.8E-5 kg/m-s.  First find the 
Reynolds number, based on chord length, to see where we are: 
 

                   

 
(a) For flat-plate theory, use Eq. (7.49a), which assumes transition at Rex = 500,000:  
 

              

 
(b) For the actual NACA 0009 airfoil, at Rec = 3E6, in Fig. 7.25, read  Cd  ≈ 0.0065.  Then 
 

                 

 
The two are quite close.  A thin airfoil at low angles is similar to a flat plate. 
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P7.46 In the flow of air at 20°C and 1 atm past a flat plate in Fig. P7.46, the wall shear is to 
be determined at position x by a floating element (a small area connected to a strain-gage force 
measurement). At x = 2 m, the element indicates a shear stress of 2.1 Pa. Assuming turbulent 
flow from the leading edge, estimate (a) the stream velocity U, (b) the boundary layer 
thickness δ at the element, and (c) the boundary-layer velocity u, in m/s, at 5 mm above the 
element. 
 

Fig. P7.46 

Solution: For air at 20°C, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. The shear stress is 

 

With the local Reynolds number known, solve for local thickness: 

 

The log-law, Eq. (7.34), is best for estimating the velocity at y = 5 mm above the element.  The 
friction velocity is u* = (τw/ρ)1/2 = (2.1/1.2) 1/2  = 1.32 m/s.  Enter the log-law: 
 
       
 
        =    

 

P7.47 Extensive measurements of wall shear stress and local velocity for turbulent airflow 
on the flat surface of the University of Rhode Island wind tunnel have led to the following 
proposed correlation: 

 

Thus, if y and u(y) are known at a point in a flat-plate boundary layer, the wall shear may be 
computed directly. If the answer to part (c) of Prob. 7.46 is u ≈ 26.3 m/s, determine whether 
the correlation is accurate for this case. 
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Solution: For air at 20°C, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. The shear stress is 
given as 2.1 Pa, and part (c) was y = 5 mm. Check each side of the proposed correlation: 

 

The correlation is good and comparable to the approximate calculations in P7.46. 
 

P7.48 A thin sheet of fiberboard weighs 90 N and lies on a rooftop, as shown in the figure. 
Assume ambient air at 20°C and 1 atm. If the coefficient of solid friction between board and roof 
is σ = 0.12, what wind velocity will generate enough friction to dislodge the board? 

 

Fig. P7.48 

Solution: For air take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. Our first problem is to evaluate 
the drag when the leading edge is not at x = 0. Since the dimensions are large, we will assume 
that the flow is turbulent and check this later: 

 

Set this equal to the dislodging friction force F = σW = 0.12(90) = 10.8 N: 

 

Solve this for U = 33 m/s Ans. 
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P7.49 A ship is 150 m long and has a wetted area of 5000 m2. If it is encrusted with 
barnacles, the ship requires 5.22 kW to overcome friction drag when moving in seawater at 
28 km/h and 20°C. What is the average roughness of the barnacles? How fast would the ship 
move with the same power if the surface were smooth? Neglect wave drag. 

Solution: For seawater at 20°C, take ρ = 1025 kg/m3 and µ = 0.00107 kg/m⋅s. Convert 
28 km/h = 7.78 m/s. Evaluate ReL = (1025)(7.78)(150)/(0.00107) ≈ 1.12E9 (turbulent). Then 

F = Power
U

=
5.22E6 W

7.78
= 6.71E5 N, CD =

2F
ρU2A

=
2(6.71E5)

1025(7.78)2 (5000)
≈ 0.00433  

 
Fig. 7.6 or Eq. (7.48b): 

 

If the surface were smooth, we could use Eq. (7.45) to predict a higher ship speed: 

 

or: P = 5.22E6 watts = 5428U20/7, solve for U =11.1 m/s ≈ 40 km / h Ans. (b)  
 

7.50 Local boundary layer effects, such as shear stress and heat transfer, are best correlated 
with local variables, rather using distance x from the leading edge.  The momentum thickness 
θ is often used as a length scale.  Use the analysis of turbulent flat-plate flow to write local 
wall shear stress τw in terms of dimensionless θ  and compare with the formula recommended 
by Schlichting [1]:   Cf   ≈  0.033 Reθ 

–0.268. 
 
Solution:  Our turbulent flat-plate theory, Eqs. (7.40) to (7.43), has expressions for Cf  and θ  
in terms of Rex.   Eliminate  Rex  to solve for Cf  in terms of  Reθ  
 

          

  

θ
δ
=

Reθ
Reδ

=
7
72

=
Reθ

(0.16 Rex
6/7 )

Eq. (7.42), and Rex = (0.027
C f

)7 Eq. (7.43)

Eliminate Rex to obtain Reθ =
7(0.16)

72
0.027
C f













6

and , finally, C f ≈ 0.0135Reθ
−1/6 Ans.

 
The exponent (-1/6) is not as steep as Schlichting’s exponent (-0.268), but the two 
formulas agree in the range where Schlichting’s formula applies,  1E6 < Rex < 1E7. 
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P7.51 In 1957 H. Görtler proposed the adverse-gradient test cases 

 

and computed separation for laminar flow at n = 1 to be xsep/L = 0.159. Compare with 
Thwaites’ method, assuming θo = 0. 
 
Solution: Introduce this stream velocity (n = 1) into Eq. (7.54), with θo = 0, and integrate: 

 

 

 

P7.52 Based on your understanding of boundary layers, which flow direction (left or right) 
for the foil shape in the figure will have less total drag? 

 
Fig. P7.52 

Solution: Flow to the left has a long run of mild favorable gradient and then a short run of 
strong adverse gradient—separation and a broad wake will occur, high pressure drag. Flow to 
the right has a long run of mild adverse gradient—less separation, low pressure drag. 

 

P7.53 Consider the flat-walled diffuser in 
Fig. P7.53, which is similar to that of 
Fig. 6.26a with constant width b. If x is 
measured from the inlet and the wall 
boundary layers are thin, show that the 
core velocity U(x) in the diffuser is given 
approximately by 

 

 

Fig. P7.53 

where W is the inlet height. Use this velocity distribution with Thwaites’ method to compute 
the wall angle θ for which laminar separation will occur in the exit plane when diffuser 
length L = 2W. Note that the result is independent of the Reynolds number. 
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Solution: We can approximate U(x) by the one-dimensional continuity relation: 

 UoWb = U(W + 2x tanθ)b, or: U(x) ≈ Uo/ [1+ 2x tanθ /W] (same as Görtler, Prob. 7.51)  

We return to the solution from Görtler’s (n = 1) distribution in Prob. 7.48: 

 

  
tanθsep =

0.159
4

= 0.03975, θsep ≈ 2.3° Ans.  

[This laminar result is much less than the turbulent value θsep ≈ 8°−10° in Fig. 6.26c.] 

 

P7.54  A car moves with a constant speed of 72 km/h. A 5-mm-diameter radio antenna is 
mounted on the car perpendicular to the air stream. What would be the oscillating frequency 
of the antenna, if the car is 1000 m above sea level? 

Solution:  A car travels at 72 km/h =  20 m/s. At 1000 m from sea-level. Table A.6 gives ρ 
=  1.112 kg/m3 and T =  281.66 K. We need to find viscosity of the air from this altitude, 
using power law 

µ
µ0

≈
T
T0








0.7

 

where   T0 =  273 K and µ0 =  1.71E-5 kg/(m·s) 

∴ µ ≈ µ0
T
T0








0.7

= 1.71E-5 281.66
273







0.7

∴ µ = 1.75E-5 kg/(m·s)

 

Calculated Reynolds number for the antenna, 

Re = ρVd
µ
=
(1.112)(20)(0.005)

1.75E-5
∴ Re = 6,354

 

Suppose oscillating frequency occurs due to vortex induced vibration.  
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From dimensional analysis, strouhal number is a relationship between oscillation and 
mean speed, which is 

st = wd
2πU  

From Fig. 5.2 Strouhal number at Re =  6354 is about 0.22.  

Therefore, 0.22 = w(0.005)
2π (20)

∴ w = 5.5 kHz Ans.
 

 

P7.55 The derivation of Eq. (7.42) for δ/x in turbulent flow used very simple velocity 
correlations, Eqs. (7.38) and (7.39).  A unified law-of-the-wall was given by Spalding [54]: 

y+ = u+ + e−κB eκu+ −1−κu+ − (κu
+ )2

2
− (κu

+ )3

6















 

where u+ = u/u*  and   y+ =  yu*/ν , while κ and B are the log-law constants in Eq. (7.34).  This 
clever inverse formula fits all the data in Fig. 6.10 out to the edge of the logarithmic region. 

How can Spalding’s formula be used to improve Eqs. (7.38) and (7.40) and thus lead to improved 
turbulent flat-plate-flow relations? 

Solution:  First, about Eq. (7.38).  This came from applying the log-law to u = U at y = δ.  If 
we do the same thing with Spalding’s complex formula, we get almost exactly the same 
thing, namely, Eq. (7.38).  So Spalding’s law is no help there.  Second, we could, in 
principle, integrate Spalding’s formula to get a much better estimate of momentum thickness 
than Eq. (7.40).  In fact, no rational person would attempt such a complex integration, and the 
result would be Reynolds number dependent anyway and laborious to implement.  Thus, 
Spalding’s formula is no help in improving the analysis of Eqs. (7.38) and (7.40).    Ans. 
       Interestingly, Spalding’s formula can be used, by staying in (u+, y+) coordinates, to 
generate an easy, accurate, alternative formula for turbulent friction and drag.  [See Ch. 6 of 
Ref. 2.] 

 

P7.56 Clift et al. [46] give the formula F ≈ (6π /5)(4 + a/b)µUb for the drag of a prolate 
spheroid in creeping motion, as shown in Fig. P7.56. The half-thickness b is 4 mm. See also 
[49]. If the fluid is SAE 50W oil at 20°C, (a) check that Reb < 1; and (b) estimate the 
spheroid length if the drag is 0.02 N. 

 

Fig. P7.56 
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Solution: For SAE 50W oil, take ρ = 902 kg/m3 and µ = 0.86 kg/m⋅s. (a) The Reynolds 
number based on half-thickness is: 

 

(b) With a given force and creeping-flow force formula, we can solve for the half-length a: 

 

 

 

P7.57 From Table 7.2, the drag coefficient of a wide plate normal to a stream is approximately 
2.0. Let the stream conditions be U∞ and p∞. If the average pressure on the front of the plate is 
approximately equal to the free-stream stagnation pressure, what is the average pressure on the 
rear? 

 

Fig. P7.57 

Solution: If the drag coefficient is 2.0, then our approximation is 

 

 

P7.58 If a missile takes off vertically from sea level and leaves the atmosphere, it has zero 
drag when it starts and zero drag when it finishes.  It follows that the drag must be a 
maximum somewhere in between.  To simplify the analysis, assume a constant drag 
coefficient, CD, and a constant vertical acceleration, a.  Let the density variation be modeled 
by the troposphere relation, Eq. (2.20).  Find an expression for the altitude z* where the drag 
is a maximum.  Comment on your result. 
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Solution:  For constant acceleration and CD, the drag follows simple formulas: 

  
F   = Drag = CD

ρ
2

V 2 A , V = at , z = 1
2

at2, V 2 = a2t2 = 2a z  

where A is the missile reference area and z is the altitude.  The density is given by Eq. (2.20): 

  

ρ
ρo

= (1 − B z
To

)n , where n =
g

R B
− 1 ≈ 4.26  

Combine these, noting that only ρ and V vary, and write the result in terms of  z: 

  

F = CD
ρo
2

(1− B z
To

)n (2az) A = K z (1− B z
To

)n , K = CD ρo a A

Minimize : dF
dz

= 0 = K (1− B z
To

)n + K z (1− B z
To

)n−1 (− B
To

)

Simplify and rearrange : zmaxdrag = z * =
To

B(n+1)
Ans.

 

For these simplifications, the point of maximum drag, z*, is dependent only upon ground 
temperature To, the lapse rate B, and the exponent n.  For the standard atmosphere of Eq. 
(2.20), we obtain z*  =  (288.16 K)/[0.0065 K/m)(4.26+1)]   =  8,430 meters. 

 

P7.59 A ship tows a submerged cylinder, 1.5 m in diameter and 22 m long, at U = 5 m/s in 
fresh water at 20°C. Estimate the towing power in kW if the cylinder is (a) parallel, and (b) 
normal to the tow direction. 

Solution: For water at 20°C, take ρ = 998 kg/m3 and µ = 0.001 kg/m⋅s. 
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P7.60 A delivery vehicle carries a long sign on top, as in Fig. P7.60. If the sign is very thin 
and the vehicle moves at 104 km/h, (a) estimate the force on the sign with no crosswind. (b) 
Discuss the effect of a crosswind. 

 

Fig. P7.60 

Solution: For air at 20°C, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. Convert 104 km/h  
= 28.9  m/s. (a) If there is no crosswind, we may estimate the drag force by flat-plate theory: 

ReL =
1.2(28.9)(8)

1.8E−5
= 1.54E7 (turbulent), CD =

0.031
ReL

1/7 =
0.031

(1.54E7)1/7 ≈ 0.00291

Fdrag = CD
ρ
2






V 2bL(2 sides) = 0.00291 1.2

2






(28.9)2 (0.6)(8)(2 sides) ≈ 14 Ν Ans. (a)

 

(b) A crosswind will cause a large side force on the sign, greater than the flat-plate drag. The 
sign will act like an airfoil. For example, if the 29 m/s wind is at an angle of only 5° with 
respect to the sign, from Eq. (7.70), CL ≈ 2π sin (5°)/(1 + 2/.075) ≈ 0.02. The lift on the sign is 
then about 

Lift = CL (ρ/2)V 2bL ≈ (0.02)(1.2/2)(28.9)2(0.6)(8) ≈ 48 N Ans. (b) 

 

P7.61 The main cross-cable between towers of a coastal suspension bridge is 60 cm in 
diameter and 90 m long. Estimate the total drag force on this cable in crosswinds of 
80 km/h. Are these laminar-flow conditions? 

Solution: For air at 20°C, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. Convert 80 km/h = 22.22 
m/s. Check the Reynolds number of the cable: 

ReD =
1.2(22.22)(0.6)

1.8E−5
≈ 890,000 (turbulent flow) Fig. 7.16a: CD ≈ 0.3  

Fdrag = CD
ρ
2

U2DL = 0.3 1.2
2







(22.35)2 (0.6)(90) ≈ 5000 N (not  laminar) Ans.  
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*P7.62    Modify Prob. P7.58 to be more realistic by accounting for missile drag during 
ascent.  Assume constant thrust T and missile weight W.  Neglect the variation of  g  with 
altitude.  Solve for the altitude z* in the Standard Atmosphere where the drag is a maximum, 
for T = 40,000 N, W = 8,000 N, and CDA = 0.4 m2.  The writer does not believe an analytic 
solution is practical. 
 
Solution:   Summation of vertical forces gives the (variable) acceleration: 

  

Fz∑ = T −W − Fdrag = ma =
W
g

dV
dt

,

  or : dV
dt

= g( T
W
−1) −

gCD Aρo
2W

(1− B z
To

)n V 2 , where V =
dz
dt

 

The power of the  z  term makes this a cumbersome ordinary differential equation.  Even if 
we rewrite it in terms of z alone, the writer cannot handle it.  Enter the given numerical data:   

  

dV
dt

= 9.81[(40000
8000

−1)− 0.4(1.2255)
2(8000)

(1− 0.0065z
288.16

)4.26 V 2]

= 39.24 m
s2

− 0.003006(1− 0.0065z
288.16

)4.26 V 2
 

Solve numerically with V = 0 at z = 0.  The results are shown in the plot below.  The 
maximum drag is about 24,000 newtons at an altitude of 5300 meters.  Since the  
drag contributes to the now-variable acceleration, the simple result of Prob. 7.58 is not 
accurate. 

                        

 

*P7.63 Joe can pedal his bike at 10 m/s on a straight, level road with no wind. The bike 
rolling resistance is 0.80 N/(m/s), i.e. 0.8 N per m/s of speed. The drag area CDA of Joe and 
his bike is 0.422 m2. Joe’s mass is 80 kg and the bike mass is 15 kg. He now encounters a 
head wind of 5.0 m/s. (a) Develop an equation for the speed at which Joe can pedal into the 
wind. (Hint: A cubic equation.) (b) Solve for V for this head wind. 
(c) Why is the result not simply V = 10 − 5 = 5 m/s, as one might first suspect? 
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Solution: Evaluate force and power with the drag based on relative velocity V + Vwind: 

 

Let Vnw (=10 m/s) be the bike speed with no wind and denote Vrel = V + Vwind. Joe’s power 
output will be the same with or without the headwind: 

 

For our given numbers, assuming ρair = 1.2 kg/m3, the result is the cubic equation 

 

Since drag is proportional to  a linear transformation V = Vnw − Vwind is not possible. 
Even if there were no rolling resistance, V ≈ 7.0 m/s, not 5.0 m/s. Ans. (c) 

 

P7.64 A fishnet consists of 1-mm-
diameter strings overlapped and knotted to 
form 1- by 1-cm squares. Estimate the 
drag of 1 m2 of such a net when towed 
normal to its plane at 3 m/s in 20°C 
seawater. What horsepower is required to 
tow 37 m2 of this net? 

 

Fig. P7.64 

 
Solution: For seawater at 20°C, take ρ =1025 kg/m3 and µ = 0.00107 kg/m⋅s. Neglect the 
knots at the net’s intersections. Estimate the drag of a single one-centimeter strand: 

ReD =
1025(3)(0.001)

0.00107
≈ 2900; Fig. 7.16a or Fig. 5.3a: CD ≈ 1.0

Fone strand = CD
ρ
2

U2DL = (1.0) 1025
2







(3)2 (0.001)(0.01) ≈ 0.046 N/strand

 

one m2  contains 20,000  strands: F1 sq m ≈ 20000(0.046) ≈ 920 N Ans. (a)  

To tow = 37 m2  of net, F = 37(920) ≈ 34000 N  

If U = 3 m
s

, Tow Power = FU = (34000)(3)
746 ≈ 137 hp Ans. (b)  
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P7.65 A filter may be idealized as an array of cylindrical fibers normal to the flow, as in 
Fig. P7.65. Assuming that the fibers are uniformly distributed and have drag coef-ficients 
given by Fig 7.16a, derive an approximate expression for the pressure drop Δp through a 
filter of thickness L. 

Solution: Consider a filter section of height H and width b and thickness L. Let N be the 
number of fibers of diameter D per 

 

Fig. P7.65 

unit area HL of filter. Then the drag of all these filters must be balanced by a pressure Δp 
across the filter: 

 

This simple expression does not account for the blockage of the filters, that is, in cylinder 
arrays one must increase “U” by 1/(1 − σ), where σ is the solidity ratio of the filter. 

 

P7.66 A sea-level smokestack is 52 m high and has a square cross-section. Its supports can 
withstand a maximum side force of 90 kN. If the stack is to survive 144 km/h hurricane 
winds, what is its maximum possible (square) width? 

Solution: For sea-level air, take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. Convert 
144 km/h = 40 m/s. We cannot compute Re without knowing the side length a, so we assume 
that Re > 1E4 and that Table 7.2 is valid. The worst case drag is when the square cylinder has 
its flat face forward, CD ≈ 2.1. Then the drag force is 

F = CD
ρ
2

U2aL = 2.1 1.225
2







(40)2 a(52)=? 90000 N, solve a ≈ 0.84 m Ans.  

Check Rea = (1.225)(40)(0.84)/(1.78E−5) ≈ 2.3E6 > 1E4, OK. 
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P7.67 For those who think electric cars are sissy, Keio University in Japan has tested a  
6.1-m long prototype whose eight electric motors generate a total of 440 kW. The “Kaz” 
cruises at 288 km/h (see Popular Science, August 2001, p. 15). If the drag coefficient is 0.35 
and the frontal area is 2.4 m2, what percent of this power is expended against sea-level air 
drag? 

Solution: For air, take ρ =1.20 kg/m3. Convert 288 km/h to 80 m/s. The drag is 

F = CD
ρ
2
V 2Afrontal = (0.35) 1.20 kg/m3

2








 80 m/s( )2 2.4 m2( ) = 3225.6 N  

Power = FV = 3225.6 N( ) 80 m/s( ) 746 W/hp( ) = 346 hp  

The horsepower to overcome drag is 61% of the total 590 horsepower available. Ans. 
 

P7.68 A parachutist jumps from a plane, using an 8.5-m-diameter chute in the standard 
atmosphere. The total mass of chutist and chute is 90 kg. Assuming a fully open chute in 
quasisteady motion, estimate the time to fall from 2000 to 1000 m. 

Solution: For the standard altitude (Table A-6), read ρ = 1.112 kg/m3 at 1000 m altitude and 
ρ = 1.0067 kg/m3 at 2000 meters. Viscosity is not a factor in Table 7.3, where we read CD ≈ 
1.2 for a low-porosity chute. If acceleration is negligible, 

 

 

Thus the change in velocity is very small (an average deceleration of only −0.001 m/s2) so we 
can reasonably estimate the time-to-fall using the average fall velocity: 

 

 

P7.69 As soldiers get bigger and packs get heavier, a parachutist and load can weigh as 
much as 1779 N. The standard 8.53-m parachute may descend too fast for safety. For heavier 
loads, the U.S. Army Natick Center has developed a 8.53-m, higher drag, less porous XT-11 
parachute (see the URL http://www.paraflite.com/html/advancedparachute.html). This 
parachute has a sea-level descent speed of 4.88 m/s with a 1779 N load. (a) What is the drag 
coefficient of the XT-11? (b) How fast would the standard chute descend at sea-level with 
such a load? 
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Solution: For sea-level air, take ρ = 1.20 kg/m3. (a) Everything is known except CD: 

F = CD
ρ
2
V 2A =1779 N = CD

1.2 kg/m3

2
4.88( )2 π

4
8.53 m( )2  

Solve for CD,new  chute = 2.18 Ans. (a)  

(b) From Table 7.3, a standard chute has a drag coefficient of about 1.2. Then solve for V: 

F = CD
ρ
2
V 2A =1779 N = 1.2( )1.2 kg/m3

2
V 2 π

4
8.53 m( )2  

Solve for Vold  chute = 6.6 m / s Ans. (b)  
 

*P7.70 A sphere of density ρs and 
diameter D is dropped from rest in a fluid 
of density ρ and viscosity µ. Assuming a 
constant drag coefficient  derive a 
differential equation for the fall velocity 
V(t) and show that the solution is 

 

 

 

Fig. P7.70 

where S = ρs /ρ is the specific gravity of the sphere material. 
 
Solution: Newton’s law for downward motion gives 

 

Separate the variables and integrate from rest, V = 0 at t = 0: ∫ dt = ∫ dV/(β − αV2),  
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P7.71 A world-class bicycle rider can generate one-half horsepower for long periods. If 
racing at sea-level, estimate the velocity which this cyclist can maintain. Neglect rolling 
friction. 

Solution: For sea-level air, take ρ = 1.22 kg/m3. From Table 7.3 for a bicycle with a 
rider in the racing position, CDA ≈ 0.30 m2. With power known, we can solve for speed: 

 

Solve for V = 12.7 m / s Ans.  
 

P7.72 The Mars roving-laboratory parachute, in the Chap. 5 opener photo, is a 16.76  
m-diameter disk-gap-band chute, with a measured drag coefficient of 1.12 [59].  Mars has 
very low density, about 0.015 kg/m3, and its gravity is only 38% of earth gravity.  If the mass 
of payload and chute is 2400 kg, estimate the terminal fall velocity of the parachute. 
Solution:  At terminal velocity, the parachute weight is balanced by chute drag: 

      

   

W = mg = (2400)[0.38(9.81)] = 8950 N = CD
ρ
2

V 2 π
4

D2 = (1.12)(0.015
2

)V 2 π
4

(16.76)2

or : 8950 N = 1.85V 2 , solve Vterminal = 69.5 m
s
= 250.2 km

h
Ans.

 

This is very fast (!), but, after all, Mars atmosphere is very thin.  After reaching this fall velocity, the payload is 
further decelerated by retrorockets.  

 

P7.73 Two baseballs, of diameter 7.35 cm, are connected to a rod 7 mm in diameter and 
56 cm long, as in Fig. P7.73. What power, in W, is required to keep the system spinning 
at 400 r/min? Include the drag of the rod, and assume sea-level standard air. 

 

Fig. P7.73 

Solution: For sea-level air, take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. Assume a 
laminar drag coefficient CD ≈ 0.47 from Table 7.3. Convert Ω = 400 rpm × 2π /60 = 
41.9 rad/s. Each ball moves at a centerline velocity 
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Then the drag force on each baseball is approximately 

 

Make a similar approximate estimate for the drag of each rod: 

 

Then, with two balls and two rods, the total driving power required is 

           

 

P7.74 The Army’s new ATPS personnel parachute is said to be able to bring a 1779-N load, 
trooper plus pack, to ground at 4.88 m/s in “mile-high” Denver, Colorado.  If we assume that 
Table 7.3 is valid, what is the approximate diameter of this new parachute? 

Solution:  Assume that Denver is 1609 m standard altitude.  From Table A.6, interpolate ρ = 
1.046 kg/m3.  From Table 7.3, CD ≈ 1.2 for a parachute.  Then the force balance is 

W = 1779 N = Drag = CD
ρ
2
V 2 π

4
D2 = 1.2 1.046 kg/m3

2








 4.88 m

s








2
π
4
D2

Solve for D ≈ 12.3 m Ans.

 

 

P7.75 The 2009 Ford Escape Hybrid has an empty weight of 16.32 kN, a drag-area CDA = 
1.08 m2 [21], and a rolling resistance coefficient RRC (without brakes) of 2.45 N per km/h of 
speed.  Estimate the maximum velocity this vehicle can attain when rolling freely, at sea-
level conditions, down a 5-degree slope. 

Solution:  For sea-level air, take ρ = 1.23 kg/m3. At maximum (terminal) velocity, the rolling 
resistance and the air drag balance the vehicle weight component along the 5° slope: 

                     

   

W sinθ = (RRC) V + (CD A) ρ
2

V 2 , or :

16.32 kN( )sin(5o ) = 2.45E − 3 N m( )V + 1.08 m2( ) 1.23 kg m3

2











V 2

Solve for V = 46.3 m s = 167 km h Ans.

 

At this (surprisingly high) terminal speed, the drag force is still double the rolling resistance. 
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P7.76 A settling tank for a municipal water supply is 2.5 m deep, and 20°C water flows 
through continuously at 35 cm/s. Estimate the minimum length of the tank which will ensure 
that all sediment (SG = 2.55) will fall to the bottom for particle diameters greater than (a) 1 
mm and (b) 100 µm. 

 
Fig. P7.76 

Solution: For water at 20°C, take ρ = 998 kg/m3 and µ = 0.001 kg/m⋅s. The particles travel 
with the stream flow U = 35 cm/s (no horizontal drag) and fall at speed Vf with drag equal to 
their net weight in water: 

 

where CD = fcn(ReD) from Fig. 7.16b. Then L = Uh/Vf where h = 2.5 m. 

 

 

 

 

 

 
P7.77 A balloon is 4 m in diameter and contains helium at 125 kPa and 15°C. Balloon 
material and payload weigh 200 N, not including the helium. Estimate (a) the terminal ascent 
velocity in sea-level standard air; (b) the final standard altitude (neglecting winds) at which 
the balloon will come to rest; and (c) the minimum diameter (<4 m) for which the balloon 
will just barely begin to rise in sea-level air. 
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Solution: For sea-level air, take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. For helium R = 
2077 J/kg⋅°K. Sea-level air pressure is 101350 Pa. For upward motion V, 

 

 

Check ReD = 2.6E6: OK, turbulent flow. 

(b) If the balloon comes to rest, buoyancy will equal weight, with no drag: 

 

(c) If it just begins to rise at sea-level, buoyancy will be slightly greater than weight: 

 

 

P7.78 It is difficult to define the “frontal area” of a motorcycle due to its complex shape. 
One then measures the drag-area, that is, CDA, in area units. Hoerner [12] reports the drag-
area of a typical motorcycle, including the (upright) driver, as about 0.5 m2. Rolling friction 
is typically about 1.95 N/km//h of speed. If that is the case, estimate the maximum sea-level 
speed (in km/h) of the new Harley-Davidson V-Rod™ cycle, whose liquid-cooled engine 
produces 86 kW. 

Solution: For sea-level air, take ρ = 1.23 kg/m3. Convert 1.95 N/km/h rolling friction to 
0.542 N/m/s of speed. Then the power relationship for the cycle is 

 

or: 86,000 W = 0.5 m2( )1.23 kg/m3

2
V 2 + 0.542 N/m/s( )V









V  

Solve this cubic equation, by iteration or EES, to find Vmax ≈ 64.8 m/s ≈ 233 km/h. Ans. 
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P7.79 The helium-filled balloon in Fig. P7.79 is tethered at 20°C and 1 atm with a string of 
negligible weight and drag. The diameter is 50 cm, and the balloon material weighs 0.2 N, 
not including the helium. The helium pressure is 120 kPa. Estimate the tilt angle θ if the 
airstream velocity U is (a) 5 m/s or (b) 20 m/s. 

 

Fig. P7.79 

Solution: For air at 20°C and 1 atm, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. For helium, 
R = 2077 J/kg⋅°K. The helium density = (120000)/[2077(293)] ≈ 0.197 kg/m3. 

The balloon net buoyancy is independent of the flow velocity: 

 

The net upward force is thus Fz = (Bnet − W) = 0.644 − 0.2 = 0.444 N. The balloon drag does 
depend upon velocity. At 5 m/s, we expect laminar flow: 

 

 

 

(b) At 20 m/s, Re = 667000 (turbulent), Table 7.3: CD ≈ 0.2: 

Drag = 0.2 1.2
2







(20)2 π

4
(0.5)2 = 9.43 N, θb = tan−1 9.43

0.444






 = 87° Ans. (b)  

These angles are too steep—the balloon needs more buoyancy and/or less drag. 
 

P7.80 The 2005 movie The World’s Fastest Indian tells the story of Burt Munro, a New 
Zealander who, in 1937, set a motorcycle record of 322 km/h on the Bonneville Salt Flats.  
Using the data of Prob. P7.78, (a) estimate the horsepower needed to drive this fast.  (b) What 
horsepower would have gotten Burt up to 400 km/h? 
Solution:  Prob. P7.78 suggests CDA = 0.5 m2 and Frolling = 1.95 N/km/h of speed.  Convert 
322 km/h to 89.44 m/s.  Bonneville is at 1311 m altitude, so take ρ = 1.0784 kg/m3 from 
Table A.6.  Now compute the total resistance force: 
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F = Fdrag + Frolling = (CDA) ρ
2
V 2 + 1.95Vkm/h

= 0.5 m2( ) 1.0784 kg/m3

2








 89.44 m/s( )2

+ 1.95 322( )= 2157 +628 = 2785 N

Power = FV = 2785 N( ) 89.44 m/s( )=  249 kW Ans.(a)

 

A lot of power!  Presumably Burt did some streamlining to reduce drag. 
(b)  Repeat this for V = 400 km/h = 111.11 m/s to get F = 4108 N,  Power = 456 kW.  Ans. (b) 

 

P7.81 To measure the drag of an upright person, without violating human-subject protocols, 
a life-sized mannequin is attached to the end of a 6-m rod and rotated at Ω = 80 rev/min, as in 
Fig. P7.81. The power required to maintain the rotation is 60 kW. By including rod-drag 
power, which is significant, estimate the drag-area CDA of the mannequin, in m2. 
 

 

Fig. P7.81 

Solution: For air, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. The mannequin velocity is Vm = 
ΩL = [(80 × 2π/60)rad/s](6m) ≈ (8.38 rad/s)(6 m) ≈ 50.3 m/s. The velocity at mid-span of the 
rod is ΩL/2 = 25 m/s. Crudely estimate the power to rotate the rod: 

 

Rod power is thus only about 2% of the total power. The total power relation is: 
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P7.82 On April 24, 2007, a French bullet train set a new record, for rail-driven trains, of 
571.5 km/h, beating the old record by 12 per cent.  Using the data in Table 7.3, estimate the 
sea-level horsepower required to drive this train at such a speed. 

Solution:   Take sea-level density as 1.2255 kg/m3.  Convert 571.5 km/h to 158.8 m/s.  From 
Table 7.3, the drag-area of a high-speed train is about CDA ≈ 8.5 m2.  Thus the drag force is 

   

F = CD A( ) ρ2 V 2 = 8.5 m2( ) 1.2255 kg/m3

2











 158.8 m

s










2

=131,342 N

Power required = FV = 131,342( ) 158.8( ) =20.86 MW/745.7= 27969.8 hp Ans.

 

 

P7.83 A radioactive dust particle approximate a sphere with a density of 2400 kg/m3. How 
long, in days, will it take the particle to settle to sea level from 12 km altitude if the particle 
diameter is (a) 1 µm; (b) 20 µm? 
Solution: For such small particles, tentatively assume that Stokes’ law prevails: 

 

Thus the time to fall varies inversely as D2 and depends on an average viscosity in the air: 

 

Try our two different diameters and check the Reynolds number for Stokes’ flow: 
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P7.84 A heavy sphere attached to a string 
should hang at an angle θ when immersed 
in a stream of velocity U, as in Fig. P7.84. 
Derive an expression for θ as a function of 
the sphere and flow properties. What is θ 
if the sphere is steel (SG = 7.86) of 
diameter 3 cm and the flow is sea-level 
standard air at U = 40 m/s? Neglect the 
string drag. 

Solution: For sea-level air, take ρ = 
1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. The 
sphere should hang so that string tension 
balances the resultant of drag and net 
weight: 

 
Fig. P7.84 

 

 

 

For the given numerical data, first check Re and the drag coefficient, then find the angle: 

 

 

 

P7.85 A typical U.S. Army parachute has a projected diameter of 8.53 m. For a payload 
mass of 80 kg, (a) what terminal velocity will result at 1000-m standard altitude? For the 
same velocity and payload, what size drag-producing “chute” is required if one uses a square 
flat plate held (b) vertically; and (c) horizontally? (Neglect the fact that flat shapes are not 
dynamically stable in free fall.) Neglect plate weight. 

Solution: For air at 1000 meters, from Table A-3, ρ ≈ 1.112 kg/m3, D = 8.53 m. Convert  
W = mg = 80(9.81) = 785 N. From Table 7-3 for a parachute, read CD ≈ 1.2, Then, for part (a), 
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(c) From Table 7-3 for a square plate normal to the stream, read CD ≈ 1.18. Then 

W = 785 N = Drag =1.18 1.112
2







(4.53)2L2, solve for L ≈ 7.63 m Ans. (c)  

This is a comparable size to the parachute, but a square plate is ungainly and unstable. 

(b) For a square plate parallel to the stream use (turbulent) flat plate theory. We need the 
viscosity—at 1000 meters altitude, estimate µair ≈ 1.78E−5 kg/m⋅s. Then 

 

Solve for L ≈ 114 m Ans. (b)  

This is ridiculous, as it was meant to be. A plate parallel to the stream is a low-drag device. 
You would need a plate the size of a football field. 

 

P7.86 Skydivers, flying over sea-level ground, typically jump at about 2.44 km altitude and 
free-fall spread-eagled until they open their chutes at about 610 m.  They take about 10 s to 
reach terminal velocity.  Estimate how many seconds of free-fall they enjoy if (a) they fall 
spread-eagled; or (b) they fall feet first?  Assume a total skydiver weight of 978.6 N. 

Solution:  From Table 7.3 use CDA = 0.836 m2 spread-eagled and 0.111 m2 when feet first.  
From Table A.6, ρ = 0.963 kg/m3 at 2.44 km standard altitude and 1.155 kg/m3 at 610 m.   
(a) Compute each terminal velocity spread-eagled (CDA = 0.836 m2): 

At 2.44 km: W = 978.6 N =(CDA)(ρ / 2)V 2 = 0.836( ) 0.963/2( )V 2 , V =49.31 m/s =177.5 km/h

At 610 m: W = 978.6 N = (CDA)(ρ / 2)V 2 = 0.836( ) 1.155/2( )V 2 , V =45.02 m/s =162.1 km/h
 

The difference is less than 10%, so just assume an average velocity of (49.31 + 45.02)/2 = 
47.17 m/s.  For the first 10 s, assume an average velocity of 49.31/2 times 10 s = 246.55 m 
before reaching terminal speed.  That leaves (1830 − 246.55) divided by 47.17 m/s of 
terminal fall ≈ 34 s     Ans.(a) 
 
(b) Compute each terminal velocity falling feet first (CDA = 0.111 m2): 

At 2.44 km:W = 978.6 = (CDA)(ρ / 2)V 2 = 0.111( ) 0.963 / 2( )V 2 , V =135.3 m/s =487.1 km/h

At 610 m: W = 978.6 = (CDA)(ρ / 2)V 2 = 0.111( ) 1.155 / 2( )V 2 , V =123.56 m/s = 444.8 km/h
 

Ridiculously fast!  The average is 129.43 m/s.  For the first 10 s, assume an average velocity 
of 135.3/2 times 10 s = 676.5 m before reaching terminal speed.  That leaves (1830 – 676.5) 
divided by 129.43 m/s of terminal fall ≈ only   9 s     Ans.(b)   [Not ‘enjoyable’, in the writer’s 
opinion .] 
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P7.87 A high-speed car has a drag coefficient of 0.3 and a frontal area of 1.0 m2. A 
parachute is to be used to slow this 2000-kg car from 80 to 40 m/s in 8 s. What should the 
chute diameter be? What distance will be travelled during deceleration? Assume sea-level air. 
Solution: For sea-level air, take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. The solution this 
problem follows from Eq. (1) of Example 7.7. 

 

Take CDchute = 1.2. Enter the given data at t = 8 sec and find the desired value of K: 

 

 

The distance travelled is given as Eq. (2) of Ex. 7.7: 

 

 

 

P7.88 A Ping-Pong ball weighs 2.6 g and has a diameter of 3.8 cm. It can be supported by 
an air jet from a vacuum cleaner outlet, as in Fig. P7.88. For sea-level standard air, what jet 
velocity is required? 

Solution: For sea-level air, take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. The ball weight 
must balance its drag: 

 

Fig. P7.88 

W = 0.0026(9.81) = 0.0255 N = CD
ρ
2

V2 π
4

D2 = CD
1.225

2
V2 π

4
(0.038)2, CD = fcn(Re)  

  CDV2 = 36.7,  Use Fig. 7.16b, converges to CD ≈ 0.47,  Re ≈ 23000, V ≈ 9 m/s Ans. 
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P7.89 In this era of expensive fossil fuels, many alternatives have been pursued.  One idea 
from SkySails, Inc., shown in Fig. P7.89, is the assisted propulsion of a ship by a large 
tethered kite.  The tow force of the kite assists the ship propeller and is said to reduce annual 
fuel consumption by 10%−35%.  For a typical example, let the ship be 120 m long, with a 
wetted area of 2800 m2.  The kite area is 330 m2 and has a force coefficient of 0.8.  The kite 
cable makes an angle of 25° with the horizontal.  Let Vwind = 48 km/h.  Neglect ship wave 
drag.  Estimate the ship speed (a) due to the kite only; and (b) if the propeller delivers 932.5 
kW to the water.  [Hint: The kite sees the relative velocity of the wind.] 
    

 

 Fig. P7.89.   Ship propulsion assisted by a large kite. [Copyright SkySails, Inc.] 

Solution:  Assume sea level air density, ρa = 1.2255 kg/m3. For seawater, take ρ = 1025 
kg/m3 and µ = 0.00107 kg/m-s. The wind velocity is 48 km/h = 13.3 m/s.  (a) For a wind Vair 
and a ship speed V, the kite force equals the friction drag of the ship: 
 
Note that the kite sees the wind velocity relative to the moving ship, (Vair – V).  The 
horizontal kite force and the ship drag are both equal to 17,400 N. 

  

Fkite = CD
ρa
2

Akite (Vair −V )2 cos25o = Fship =Cd , friction
ρ
2

Aship V 2 ,

where Cd , friction =
0.031
ReL

1/7
=

0.031
(1025*V *120 / .00107)1/7













Thus (0.8)(1.2255
2

)(330)(13.3−V )2 cos25o = Cd , friction (1025
2

)(2800) V 2

Solve by iteration or EES : V =Vship = 2.49 m/s ≈ 9 km/h Ans.(a)

 

 (b) The propeller power is equivalent to a propulsion force, Fp = Power/V.  This force, added 
to the kite horizontal force, must equal the ship drag.  Convert 1250 hp to (1250)(745.7) = 
932 kW. 
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932,000W
V

+ (0.8)(1.2255
2

)(330)(13.3−V )2 cos25o = Cd , friction(1025
2

)(2800) V 2

where Cd , friction =
0.031
ReL

1/7
=

0.031
(1025*V *120 / .00107)1/7

 

Solve by iteration or EES to obtain   V   =   7.42 m/s    ≈   26.7 km/h.     Ans.(b) 

This is fast, about the average speed of a cargo ship.  At this speed, the relative wind on the 
kite is small, only 6 m/s.  Hence the kite force is only 5200 N, while the propeller force is 
125,000 N. 

It might be better to cut the power, for example, by 50% to 466 kW, which would result in  
V =  6.0 m/s =  21.6 km/h, which is only a 20% reduction in ship speed.   

 

P7.90 Hoerner [Ref. 12 of Chap. 7, p. 3–25] states that the drag coefficient of a flag of 2:1 
aspect ratio is 0.11 based on planform area. URI has an aluminum flagpole 25 m high and 14 
cm in diameter. It flies equal-sized national and state flags together. If the fracture stress of 
aluminum is 210 MPa, what is the maximum flag size that can be used yet avoids breaking 
the flagpole in hurricane (120 km/h) winds? Neglect the drag of the flagpole. 

 

Fig. P7.90 

Solution: URI is approximately sea-level, ρ  = 1.225 kg/m3. Convert 120 km/h = 33.3 m/s. We 
will use the most elementary strength of materials formula, without even a stress-
concentration factor, since this is just a fluid mechanics book: 

 

Assume flags are at the top (see figure) with no space between. Each flag is “H” by “2H.”  

Then, 

M = 56600 N⋅m = FUSA 25 m −
H
2







+ FRI 25 m −

3H
2







,

where FUSA = FRI = 0.11 1.225
2







(33.3)2H (2H )

Iterate or use EES: F =1282.8 N,  H = 2.93 m,  Flag length = 2H = 5.86 m Ans.
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P7.91 A tractor-trailer truck has a drag area CDA = 8 m2 bare and CDA = 6.7 m2 with a 
deflector added (Fig. 7.18b). Its rolling resistance is 31.25 N for each km/h of speed. 
Calculate the total horsepower required if the truck moves at (a) 88 km/h; and (b) 120 km/h. 

Solution: For sea-level air, take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. Convert V = 88 
km/h = 24.4 m/s and 120 km/h = 33.3 m/s. Take each speed in turn: 

(a) 88 km
h

: Fbare = (8 m2 ) 1.225
2







(24.4)2 + 31.25(88) = 2917 + 2750 = 5667 N

Power required = FV = (5667)(24.4) =138 kW ≈ 185 hp (bare)

with a deflector, F ≈ 2481+ 2750 = 5231 N, Power =129 kW ≈ 172 hp ( − 7%)

 

(b) 120 km
h

: F = 8 1.225
2







(33.3)2 + 31.25(120) = 9184 N,

Power = 306 kW ≈ 410 hp (bare)

With deflector, F = 8363 N, Power = 280 kW ≈ 376 hp ( −8%)

 

 

P7.92 A pickup truck has a clean drag-area CDA of 3.25 m2. Estimate the horsepower 
required to drive the truck at 88 km/h (a) clean and (b) with the 0.9- by 1.8-m sign in Fig. P7.92 
installed if the rolling resistance is 667 N at sea level. 

Solution: For sea-level air, take ρ = 1.23 kg/m3 and µ = 1.8E−5 N⋅s/m2. Convert V = 88 
km/h = 24.4 m/s. Calculate the drag without the sign: 

F = Frolling +CDA ρ
2

 V2 = 667 + 3.25 1.23/2( ) 24.4( )2 ≈ 1857 N  

 

Fig. P7.92 
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Horsepower = 1857( ) 24.4( ) = 45.3 kW clean( ) Ans. (a)  

With a sign added, b/h = 2.0, read CD ≈ 1.19 from Table 7.3. Then 

   

F =1857clean +1.19 1.23
2









 24.4( )2 1.8( ) 0.9( ) ≈ 2563 N,

Power = FV ≈ 63 kW Ans. (b)

 

 

P7.93 The new AMTRAK high-speed Acela train can reach 240 km/h, which presently it 
seldom does, because of the curvy coastline tracks in New England. If 75% of the power 
expanded at this speed is due to air drag, estimate the total horsepower required by the Acela. 
 
Solution: For sea-level air, take ρ = 1.22 kg/m3. From Table 7.3, the drag-area CD A of a 
streamlined train is approximately 8.5 m2. Convert 240 km/h to 66.7 m/s. Then 

0.75Ptrain = CDA( ) ρ
2
V 2




V = 8.5 m2( ) 1.22 kg/m3

2








 66.7 m/s( )3 =1.54E6 watts  

Solve for Ptrain = 2.05E6 W = 2750 hp Ans.  

 

P7.94 In the great hurricane of 1938, 
winds of 136 km/h blew over a boxcar in 
Providence, Rhode Island. The boxcar was 
3 m high, 12 m long, and 1.8 m wide, with 
a 0.9-m clearance above tracks 1.5 m 
apart. What wind speed would topple a 
boxcar weighing 178 kN? 
 
Solution: For sea-level air, take ρ = 1.23 
kg/m3 and µ = 1.8E−5 N⋅s/m2. From Table 
7.3 for b / h = 4, estimate CD ≈ 1.2. The 
estimated drag force F on the left side of 
the box car is thus 

 

Fig. P7.94 

F = CD
ρ
2

V2bh =1.2 1.23
2







V2(12)(3) ≈ 26.57V2  (m/s)

Sum moments about right wheels: (26.57V2)(2.4 m)− (178000)(0.75 m) = 0, V2 = 2094
 

Solve Voverturn = 45.8m/s ≈ 165 km / h Ans.  

[The 1938 wind speed of 136 km/h would overturn the car for a car weight of 132 kN.] 
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P7.95 A cup anemometer uses two 5-cm-diameter hollow hemispheres connected to two 15-
cm rods, as in Fig. P7.95. Rod drag is neglected, and the central bearing has a retarding 
torque of 0.004 N⋅m. With simplifying assumptions, estimate and plot rotation rate Ω versus 
wind velocity in the range 0 < U < 25 m/s. 

Solution: For sea-level air, take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. For any 
instantaneous angle θ, as shown, the drag forces are assumed to depend on the relative 
velocity normal to the cup: 

 

 

Fig. P7.95 

 
 
For a given wind velocity 0 < U < 25 m/s, we find the rotation rate Ω (here in rad/s) for 
which the average torque over a 90° sweep is exactly equal to the frictional torque of 0.004 
N⋅m. [The torque given by the formula mirrors itself over 90° increments.] For U = 20 m/s, 
the torque variation given by the formula is shown in the graph below. We do this for the 
whole range of U values and then plot Ω (in rev/min) versus U below. We see that the 
anemometer will not rotate until U ≥ 6.08 m/s. Thereafter the variation of Ω with U is 
approximately linear, making this a popular wind-velocity instrument. 
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*P7.96 A 1500-kg automobile uses its drag-area, CDA = 0.4 m2, plus brakes and a 
parachute, to slow down from 50 m/s. Its brakes apply 5000 N of resistance. Assume sea-
level standard air. If the automobile must stop in 8 seconds, what diameter parachute is 
appropriate? 
 
Solution: For sea-level air take ρ = 1.225 kg/m3. From Table 7.3 for a parachute, read CDp 
≈ 1.2. The force balance during deceleration is, with Vo = 50 m/s, 

 

Note that, if drag = 0, the car slows down linearly and stops in 50(1500)/(5000) = 15 s, not 
fast enough—so we definitely need the drag to cut it down to 8 seconds. The first-order 
differential equation above has the form 
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Separate the variables and integrate, with V = Vo = 50 m/s at t = 0: 

 

The unknown is Dp, which lies within a! Iteration is needed—an ideal job for EES! Well, 
anyway, you will find that Dp = 3 m is too small (t ≈ 9.33 s) and Dp = 4 m is too large (t ≈ 
7.86 s). We may interpolate (or EES will quickly report): 

 
 

P7.97 A hot-film probe is mounted on a cone-and-rod system in a sea-level airstream of 45 
m/s, as in Fig. P7.97. Estimate the maximum cone vertex angle allowable if the flow-induced 
bending moment at the root of the rod is not to exceed 30 N⋅cm. 
 
Solution: For sea-level air take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. First figure 

 

Fig. P7.97 

the rod’s drag and moment, assuming it is a smooth cylinder: 

 

Then add in the drag-moment of the cone about the base: 
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P7.98 A rotary mixer consists of two 1-m-long half-tubes rotating around a central arm, as 
in Fig. P7.98. Using the drag from Table 7.2, derive an expression for the torque T required 
to drive the mixer at angular velocity Ω in a fluid of density ρ. Suppose that the fluid is water 
at 20°C and the maximum driving power available is 20 kW. What is the maximum rotation 
speed Ω r/min? 

 

Fig. P7.98 

Solution: Consider a strip of half-tube of width dr, as shown in Fig. P7.98 above. The local 
velocity is U = Ωr, and the strip frontal area is Ddr. The total torque (2 tubes) is 

 

(b) For water at 20°C, take ρ = 998 kg/m3 and µ = 0.001 kg/m⋅s. Assume that the half-tube 
shape has the drag coefficient CD ≈ 2.3 as in Table 7.2. Then, with power known, 

 

 

 

P7.99 An airplane weighing 28 kN, with a drag-area CDA = 5 m2, lands at sea level at 
55 m/s and deploys a drag parachute 3 m in diameter. No other brakes are applied. 
(a) How long will it take the plane to slow down to 20 m/s? (b) How far will it have traveled 
in that time? 
 
Solution: For sea-level air, take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. The analytical 
solution to this deceleration problem was given in Example 7.8 of the text: Take CD,chute = 
1.2. 

 

(a) Then the time required to slow down from 55 m/s to 20 m/s, without brakes, is 
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(b) The distance traveled was also derived in Example 7.8: 

 

 

*P7.100 A Savonius rotor (see Fig. 6.29b) 
can be approximated by the two open half-
tubes in Fig. P7.100 mounted on a central 
axis. If the drag of each tube is similar to that 
in Table 7.2, derive an approximate formula 
for the rotation rate Ω as a function of U, D, 
L, and the fluid properties ρ and µ. 

Solution: The analysis is similar to  
Prob. 7.95 (the cup anemometer). At any 
arbitrary angle as shown, the net torque 
caused by the relative velocity on each half-
tube is set to zero (assuming a frictionless 
bearing): 

 

This pattern of torque repeats itself every 
90°. Thus the torque is an average value: 

 

 

Fig. P7.100 

 

 

 

 

where CD1 = 2.3 and CD2 = 1.2 are taken from Table 7.2. The average value of cosθ over 0 to 
90° is 2/π ≈ 0.64. Then a simple approximate expression for rotation rate is 
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*P7.101 A simple measurement of automobile drag can be found by an unpowered 
coastdown on a level road with no wind. Assume constant rolling resistance. For an 
automobile of mass 1500 kg and frontal area 2 m2, the following velocity-versus-time data 
are obtained during a coastdown: 

t, s: 0.00 10.0 20.0 30.0 40.0 

V, m/s: 27.0 24.2 21.8 19.7 17.9 

Estimate (a) the rolling resistance and (b) the drag coefficient. This problem is well suited for 
digital-computer analysis but can be done by hand also. 

Solution: For air, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. Assuming that rolling friction 
is linearly proportional to the car velocity. Then the equation of motion is 

 

This is the formula which we must fit to the data. Introduce numerical values to get 

 
solve by least squares for K and CD. 

The least-squares results are K ≈ 9.1 N⋅s/m and CD ≈  0.24. Ans. 

These two values give terrific accuracy with respect to the data—deviations of less than 
±0.06%! Actually, the data are not sensitive to K or CD, at least if the two are paired nicely. 
Any K from 8 to 10 N⋅s/m, paired with CD from 0.20 to 0.28, gives excellent accuracy. We 
need more data points to discriminate between parameters. 

 

*P7.102 A buoyant ball of specific gravity 
SG < 1, dropped into water at inlet velocity 
Vo, will penetrate a distance h and then pop 
out again, as in Fig. P7.102. (a) Make a 
dynamic analysis, assuming a constant drag 
coefficient, and derive an expression for h as 
a function of system properties. (b) How far 
will a 5-cm-diameter ball, with SG = 0.5 and 
CD = 0.47, penetrate if it enters at 10 m/s? 
 

 
Fig. P7.102 
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Solution: The buoyant force is up, Wnet = (1 − SG)ρg(π /6)D3, and with z down as shown, 
the equation of motion of the ball is 

 

The total distance travelled until the ball stops (at V= 0) and turns back upwards is 

 

(b) Apply the specific data to find the depth of penetration for a numerical example. For 
water, take ρ = 998 kg/m3 and µ  = 0.001 kg/m⋅s. 

 

Then the formula predicts total penetration depth of 

 

NOTE: We have neglected “hydrodynamic” mass of the ball (Section 8.8). 

 

P7.103 Two steel balls (SG = 7.86) are 
connected by a thin hinged rod of negligible 
weight and drag, as shown in Fig. P7.103. A 
stop prevents counter-clockwise rotation. 
Estimate the sea-level air velocity U for 
which the rod will first begin to rotate 
clockwise. 

Solution: For sea-level air, take ρ = 1.225 
kg/m3 and µ = 1.78E−5 kg/m⋅s. Let “a” and 

 

Fig. P7.103 
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“b” denote the large and small balls, respectively, as shown. The rod begins to rotate when 
the moments of drag and weight are balanced. The (clockwise) moment equation is 

Σ Mo = Fa(0.1 sin 45°) − Wa(0.1 cos 45°) − Fb(0.1 sin 45°) + Wb(0.1 cos 45°) = 0 

For 45°, there are nice cancellations to obtain ∴ Fa − Fb = Wa − Wb, or: 

 

Assuming that CDa = CDb ≈ 0.47 (Re < 250000), we may easily solve for air velocity: 

 

 

We may check that Remax = 1.225(64)(0.02)/1.78E−5 ≈ 89000, OK, CD ≈ 0.47. 

 

P7.104 A tractor-trailer truck is coasting freely, with no brakes, down an 8° slope at 1000-m 
standard altitude. Rolling resistance is 120 N for every m/s of speed. Its frontal area is 9 m2, 
and the weight is 65 kN. Estimate the terminal coasting velocity, in km/h, for (a) no deflector; 
and (b) a deflector installed. 
 
Solution: For air at 100-m altitude, ρ = 1.112 kg/m3. From Table 7.3, CD = 0.96 without and 
0.76 with a deflector.  Summing forces along the roadway gives: 

 

(a, b) Applying the given data results in a quadratic equation: 

 

or: V 2 + 24.98V −1883 = 0 Solve V = 32.7 m/s = 118 km / h Ans. (a)  

 

or: V 2 + 31.55V − 2379 = 0 Solve V = 35.5 m/s = 128 km / h Ans. (b)  
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P7.105 Icebergs can be driven at 
substantial speeds by the wind. Let the 
iceberg be idealized as a large, flat 
cylinder,  with one-eighth of its 
bulk exposed, as in Fig. P7.105. Let the 
seawater be at rest. If the upper and lower 
drag forces depend upon relative velocities 
between the berg and the fluid, derive an 
approximate expression for the steady 
iceberg speed V when driven by wind 
velocity U. 
 
Solution: Assuming steady drifting (no 
acceleration), the berg sees a water current V 
coming from the front and a relative air 
velocity U − V coming from behind. Ignoring 
moments (the berg will merely tilt slightly), 
the two forces must balance: 

Fair = CD,air
1
2
ρair (U −V)2 D L

8

= Fwater = CD,water
1
2
ρwaterV

2 7L
8

 D
 

 

Fig. P7.105 

This has the form of a quadratic equation: 

 

 

P7.106 Sand particles (SG = 2.7), approximately spherical with diameters from 100 to 
250 µm, are introduced into an upward-flowing water stream. What is the minimum water 
velocity to carry all the particles upward? 
 
Solution: Clearly the largest particles need the most water speed. Set net weight = drag: 

 

Iterate in Figure 7.16b: ReD ≈ 10, CD ≈ 4, Vmin ≈  0.04 m/s Ans. 
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P7.107 When immersed in a uniform 
stream, a heavy rod hinged at A will hang 
at Pode’s angle θ, after L. Pode (1951). 
Assume the cylinder has normal drag 
coefficient CDn and tangential coefficient 
CDt, related to Vn and Vt, respectively. 
Derive an expression for θ as a function of 
system parameters. Compute θ for a steel 
rod, L = 40 cm, D = 1 cm, hanging in sea-
level air at V = 35 m/s. 
 
Solution: For sea-level air, take ρ = 
1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. The 
tangential drag force passes right through 
A, so the moment balance is 

 

Fig. P7.107 

 

 

For the numerical data, take SG(steel) = 7.86, Ren ≈ 17000 (laminar), CDn ≈ 1.2: 

 

 

 
P7.108 The Russian Typhoon-class submarine is 170 m long, with a maximum diameter of 
23 m.  Its propulsor can deliver up to 59.68 MW to the seawater.  Model the sub as an 8:1 
ellipsoid and estimate the maximum speed, in knots, of this ship. 
 
Solution:  For seawater, take ρ = 1025 kg/m3.  The flow is surely turbulent (ReL > 2E9) so 
use the “turbulent” value CD ≈ 0.08 in Table 7.3 for an 8:1 ellipsoid.  The power is cubic in V: 

 

Power = 5.97E7 W = FV = (CD
ρ
2
V 2 π
4
Dmax
2 )V = (CD

ρ
2
π
4
Dmax
2 )V 3

Plug in : 5.97E7W = (0.08)(1025
2
) π
4
(23m)2V 3 ; Solve V = 15.2 m

s
= 54.7 km / h Ans.
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P7.109 A ship 50 m long, with a wetted area of 800 m2, has the hull shape of Fig. 7.19, with 
no bow or stern bulbs. Total propulsive power is 1 MW. For seawater at 20°C, plot the ship’s 
velocity V (in knots) versus power P for 0 < P < 1 MW. What is the most efficient setting? 
 
Solution: For seawater at 20°C, take ρ = 1025 kg/m3 and µ = 0.00107 kg/m⋅s. The drag is 
taken to be the sum of friction and wave drag—which are defined differently: 

F = Ffrict + Fwave = CD,frict
ρ
2

V2Awet + CD,wave
ρ
2

V2L2,

with CD,wave  from Fig. 7.19 and CD,frict ≈ 0.031/ReL
1/7 (turbulent flat plate formula)

Here, F = CDfrict
1025

2
V2 (800) + CDwave

1025
2

V2(50)2, with V in m/s 1 m
s
= 1.94 kn





 

Assume different values of V, calculate friction and wave drag (the latter depending upon the 
Froude number V/√(gL) = V/√[9.81(50)] ≈ 0.0452V(m/s). Then compute the power in watts 
from P = FV, with F in newtons and V in m/s. Plot P versus V in knots on the graph below. 
The results show that, below 4 knots, wave drag is negligible and sharp increases in ship 
speed are possible with small increases in power. Wave drag limits the maximum speed to 
about 8 knots. There are two good high-velocity, “high slope” regions—at6 knots and at 7.5 
knots—where speed increases substantially with power. 
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P7.110 For the kite-assisted ship of Prob. P7.89, again neglect wave drag and let the wind 
velocity be 48.3 km/h.  Estimate the kite area that would tow the ship, unaided by the 
propeller, at a ship speed of 14.8 km/h. 
 
Solution:  Since the only unknown is the kite area, this problem is simpler than Prob. P7.89.  
Convert 8 knots to 4.12 m/s.  Assume sea level air density, ρa = 1.2255 kg/m3. For seawater, 
take ρ = 1025 kg/m3 and µ = 0.00107 kg/m-s.   The kite force balances the ship drag: 

   

Fkite = CD
ρa
2

Akite (Vair −V )2 cos25o = Fship = Cd , friction
ρ
2

Aship V 2

Evaluate ReL =
ρVL
µ

=
(1025)(4.12)(120)

0.00107
= 4.73E8

Cd , friction =
0.031
ReL

1/7
=

0.031
(4.73E8)1/7

= 0.00179

Finally, (0.8)(1.2255
2

)Akite(13.4 − 4.12)2 cos25o = (0.00179)(1025
2

)(2800)(4.12)2

Solve for Akite = 1130 m2 Ans.

 

 

P7.111 The largest flag in Rhode Island stands outside Herb Chambers’ auto dealership, on 
the edge of Route I-95 in Providence.  The flag is 15.24 m long, 9.14 m wide, weighs 1.1 kN, 
and takes four strong people to raise it or lower it.  Using Prob. P7.43 for input, estimate (a) 
the wind speed, in km/h, for which the flag drag is 4.45 kN; and (b) the flag drag when the 
wind is a low-end category 1 hurricane, 119 km/h.  [HINT: Providence is at sea level.]  
 
Solution: Prob. P7.43 suggests a drag coefficient CD ≈ 0.02 + 0.1(L/b), based on flag area 
Lb.  Thus, for this big flag, CD = 0.02 + 0.1(15.24 m)/(9.14 m)  ≈  0.187.  From Table A.3, 
sea level density is 1.2255 kg/m3.  Then a drag of 4.45 kN occurs when 

   

F = 4.45 N = CD
ρ
2

V 2 Lb = 0.187( ) 1.2255
2









V 2 15.24( ) 9.14 m( )

Solve for V 2 =278.8 m2 s2 , V =16.7 m s =  60 k m h Ans.(a)

 

(b)  Convert  119 km/h  =  33.1 m/s.  Then compute the hurricane drag: 

   
F = CD

ρ
2

V 2 Lb = 0.187( ) 1.2255
2









 33.1( )2 15.24( ) 9.14( ) ≈17.5 kN Ans.(b)  
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P7.112 The data in Fig. P7.112 are for lift and drag of a spinning sphere from Ref. 12, pp. 
7–20. Suppose a tennis ball (W ≈ 0.56 N, D ≈ 6.35 cm) is struck at sea level with initial 
velocity Vo = 30 m/s, with “topspin” (front of the ball rotating downward) of 120 rev/sec. If the 
initial height of the ball is 1.5 m, estimate the horizontal distance travelled before it strikes 
the ground. 

 
Fig. P7.112 

 
Solution: For sea-level air, take ρ = 
1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. For 
this short distance, the ball travels in 
nearly a circular arc, as shown at right. 
From Figure P7.112 we read drag and lift: 

 

Initially, the accelerations in the horizontal 
and vertical directions are (z up, x to left) 

 

 

 

The term ax serves to slow down the ball from 30 m/s, when hit, to about 24 m/s when it 
strikes the floor about 0.5 s later. The average velocity is (30 + 24)/2 = 27 m/s. The term az 
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causes the ball to curve in its path, so one can estimate the radius of curvature and the angle 
of turn for which Δz = 1.5 m. Then, finally, one estimates Δx as desired: 

 

 

A more exact numerical integration of the equations of motion (not shown here) yields the 
result Δx ≈ 13.0 m at t ≈ 0.49 s. 

 

P7.113      The world record for automobile mileage, 5384.3 km/L, was set in 2005 by the 
PAC-CAR II in Fig. P7.113, built by students at the Swiss Federal Institute of Technology in 
Zurich [52].  This little car, with an empty weight of 285 N and a height of only 0.76 m, 
traveled a 21-km course at 30 km/hr to set the record.  It has a reported drag coefficient of 
0.075 (comparable to an airfoil), based upon a frontal area of 0.28 m2.  (a) What is the drag of 
this little car when on the course?  (b) What horsepower is required to propel it?  (c) Do a bit 
of research and explain why a value of miles per gallon is completely misleading in this 
particular case. 
 

 
 

Fig. P7.113.  The world’s best mileage, from the PAC-Car II of ETH Zurich. 
 
Solution:   For air, assuming sea-level, take ρ = 1.23 kg/m3.  Convert V = 30 km/h to 8.33 
m/s.  (a) Then the car’s drag on the course, in N, is 

F = CD
ρ
2
V 2A = (0.075)1.23 kg/m3

2
(8.33 m/s)2 (0.28m2 ) = 0.9 N Ans.(a)  

Pretty small!    Probably the rolling resistance is larger than this. 
(b)  The power required to overcome drag is simply 

P = FV = (0.9 N)(8.33 m/s) = 7.46 W = 0.010hp Ans.(b)  

Pretty small!  Not much of an engine is required.  (c) The actual propulsor for this car was a 
very small hydrogen fuel cell.  Thus “km/L” does not make much sense. 
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P7.114 A baseball pitcher throws a curveball with an initial velocity of 104.6 km/h and a 
spin of 6500 r/min about a vertical axis. A baseball weighs 7.42 N and has a diameter of 7.37 
cm. Using the data of Fig. P7.112 for turbulent flow, estimate how far such a curveball will 
have deviated from its straightline path when it reaches home plate 18.4 m away. 

Solution: For sea-level air, take ρ = 1.23 kg/m3 and µ = 1.8E-5 N⋅s/m2. Again, for this short 
distance, the ball travels 

 
Fig. P7.114 

 
in nearly a circular arc, as shown above. However, gravity is not involved in this curved 
horizontal path. First evaluate the lift and drag: 

Vo = 104.6 km/h = 29.1 m/s, ω = 6500 2π
60






= 681 rad

s
, ωR

V
=

681(0.0737 / 2)
29.1

≈ 0.86  

Fig. P7.112: Read CD ≈ 0.44,  CL ≈ 0.17  

The initial accelerations in the x- and y-directions are 

ax,0 = −
drag
m

= −
0.44(1.23)(29.1)2 (π/4)(0.0737)2

1.42 / 9.81
≈ −6.75 m / s2

ay,0 = −
lift
m

= −
0.17(1.23)(29.1)2 (π/4)(0.0737)2

1.42 / 9.81
≈ −2.61 m / s2

 

 
The ball is in flight about 0.5 sec, so ax causes it to slow down to about 25.7 m/s, with  
an average velocity of (29.1 + 25.7)/2 ≈ 27.4 m/s. Then one can use these numbers to 
estimate R: 

R =
V2

avg

|ay |
=

(27.4)2

2.61
≈ 288 m; θ = sin−1 Δx

R





= sin−1 18.4

288





≈ 3.66°

Finally, Δyhome plate = R(1− cosθ) = 288(1− cos 3.66°) ≈ 0.6 m Ans.
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P7.115 A table tennis ball has a mass of 2.6 g and a diameter of 3.81 cm. It is struck 
horizontally at an initial velocity of 20 m/s while it is 50 cm above the table, as in 
Fig. P7.115. For sea-level air, what topspin (as shown), in r/min, will cause the ball to strike 
the opposite edge of the table, 4 m away? Make an analytical estimate, using 
Fig. P7.112, and account for the fact that the ball decelerates during flight. 

 
Fig. P7.115 

NOTE: The table length is 4 meters. 

Solution: For sea-level air, take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. This problem is 
difficult because the ball is so light and will decelerate greatly during its trip across the table. 
For the last time, as in Prob. 7.112, for this short distance, we assume the ball travels in 
nearly a circular arc, as analyzed there. First, from the geometry of the table, Δx = 4 m, Δz = 
0.5 m, the required radius of curvature is known: 

 

Then the centripetal acceleration should be estimated from R and the average velocity during 
the flight. Estimate, from Fig. P7.112, that CD ≈ 0.5. Then compute 

 

This reduces the ball speed from 20 m/s to about 12 m/s during the 0.25-s flight. Taking our 
average velocity as (20 + 12)/2 ≈ 16 m/s, we compute the vertical acceleration: 

 

 

From Fig. P7.112, this value of CL (probably laminar) occurs at about ωR/V ≈ 0.6, 
or ω = 0.6(16)/(0.0381/2) ≈ 500 rad/s ≈ 4800 rev/min. Ans. 
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P7.116 A smooth wooden sphere (SG = 0.65) is connected by a thin rigid rod to a hinge in a 
wind tunnel, as in Fig. P7.116. Air at 20°C and 1 atm flows and levitates the sphere. (a) Plot 
the angle θ versus sphere diameter d in the range 1 cm ≤ d ≤ 15 cm. (b) Comment on the 
feasibility of this configuration. Neglect rod drag and weight. 

 
Fig. P7.116 

Solution: For air, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. If rod drag is neglected and 
the balance of moments around the hinge gives: 

 

We find CD from Red = ρVd/µ  =  (1.2)(12)d/(0.000018) = 8E5d (with d in meters). For d = 1 
cm, Red = 8000, Fig. 7.16b, CD = 0.5, tanθ = 0.982, θ = 44.5°. At the other extreme, for d = 15 
cm, Red = 120000, Fig. 7.16b, CD = 0.5, tanθ = 14.73, θ = 86.1°. 
(a) A complete plot is shown at right.(b) This is a ridiculous device for either velocity or 
diameter. 

 
Problem 7.116: Angles vs. Diameter 
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P7.117 An auto has m = 1000 kg and a drag-area CDA = 0.7 m2, plus constant 
70-N rolling resistance. The car coasts without brakes at 90 km/h climbing a hill of 10 
percent grade (5.71°). How far up the hill will the car come to a stop? 
 

 
Fig. P7.117 

Solution: For sea-level air, take ρ = 1.225 kg/m3 and µ = 1.78E−5 kg/m⋅s. If x denotes 
uphill, the equation of motion is 

 

For the particular data of this problem, we evaluate 

Vf =
9810sin 5.71°+ 70

0.7(1.225/2)
≈ 49.4 m

s
, Wsinθ + Fr

mVf
=

9810sin5.71°+ 70
1000(49.4)

≈ 0.0212

also tan−1 25
49.4






= 0.469 radians. So, finally, V ≈  49.4 tan[0.469 − 0.0212t]

 

The car stops at V = 0, or tfinal = 0.469/0.0212 ≈ 22.1 s. The distance to stop is computed by 
the same formula as in Prob. 7.102: 

 

 

P7.118        The deep submergence vehicle ALVIN, in the Chap. 2 opener photo, is 7 m 
long and 2.6 m wide.  It weighs about 160 kN in air and ascends (descends) in the seawater 
due to about 1600 N of positive (negative) buoyancy.  Noting that the leading face of the ship 
is quite different for ascent and descent, (a) estimate the velocity for each direction, in meters 
per minute.  (b) How long does it take to ascend from its maximum depth of 4500 m? 
 
Solution:   Well, nothing in Table 7.3 looks much like the top or the bottom of ALVIN.  
Let’s just estimate.  When ascending, the leading face of ALVIN is cluttered and ugly and 
approximates a blunt body, so let’s guess CD,ascent ≈ 1.0.  When descending, the approaching 
water sees a smoother, if still blunt, shape, so let’s guess CD,descent ≈  0.7.  ALVIN is almost 
rectangular in outline either way, so we take the area to be bL ≈ (7 m)(2.6 m) = 18.2 m2.   
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For seawater, ρ = 1025 kg/m3.  Then 

   

Descent : F = 1600 = CD,descent
ρ
2

Vd
2 A ≈ (1.0)(1025 kg / m3)

2
)Vd

2 (18.2 m2 )

Solve for Vdescent ≈ 0.41m
s
≈ 25 m

min
Ans.(a −1)

Ascent : F = 1600 = CD,ascent
ρ
2

Va
2 A ≈ (0.7)(1025 kg / m3)

2
)Va

2 (18.2 m2 )

Solve for Vascent ≈ 0.49 m
s
≈ 30 m

min
Ans.(a − 2)

 

According to Mark Spear of the Woods Hole ALVIN Project, these estimates are about right.  
Students, however, might have quite different estimates of the (unknown) drag coefficients. 
(b) At 25 m/min, rising from 4500 meters takes (4500 m)/(25 m/min) = 180 min = 3 hours!  
Mark Spear told the writer he takes along a book to read during ascent and descent. 

 

P7.119  From Fig. 7.13, if the cylinder 
spins clockwise with rad/s, how would 
theoretical pressure distribution change? 

Solution: This problem does not ask students 
to obtain full analytical solution. Therefore, it 
should be enough to see point at top and 
bottom of the cylinder. Assume that the 
cylinder diameter is D-m.  

From Bernoulli’s equation 

p1

ρ
+

1
2
V  1

2 + gz1 =
p2

ρ
+

1
2
V  2

2 + gz2  

At point A, V2 = V1 +
wD
2

 

∴
p1 − p2

ρ
=

1
2

V1 +
wD
2









2

−V  1
2









 > 0  

At point B, V2 = V1 –
wD
2

 

∴
p1 − p2

ρ
=

1
2

V1 −
wD
2









2

−V  1
2









 < 0  

This means that pressure at A is lower than the stream pressure, while pressure at B is higher 
than the stream pressure. This may lead to our conclusion that the pressure distribution on the 
bottom half of the cylinder is higher than the top half.  Ans.  
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P7.120  From Prob. P7.89, is it possible to find an optimal ship speed for given wind speed 
and existing conditions of the kite? If so, what would be the speed? (An optimal ship speed in 
this case could mean minimum power.) 

Solution: Assume that friction from the air is insignificant. In fact if the wind blows behind the 
ship’s heading, the wind would help to propel the ship instead of dragging it. Therefore, in our 
case power required to propel the ship equals to power from the ship’s propeller and wind power 
from the kite. 

Preq = Ppreq + Pwind  
That is 

 

              Cd, fric
ρ
2

Aship  V 3 = Pprop +CD
ρa
2

 Akite (Vair −V )2V cosθ

Assume Cship = Cd, fric
ρ
2

Aship  and Ckite = CD
ρa
2

Akite cosθ,  we can rewrite the above 

equation to be

              Cship  V 3 = Pprop +Ckite (Vair −V )2V

              ∴   Pprop = Cship  V 3 −Ckite (Vair −V )2V

                            = Cship  V 3 −Ckite (Va
2V − 2VaV

2 +V 3)

                     Pprop = (Cship −Ckite ) V 3 + 2CkiteVaV
2 −CkiteVa

2V
An Optimum power with respect to the ship’s velocity is achieved by

                  
dPprop

dV
= 0

or

                  
dPprop

dV
= 3(Cship −Ckite ) V 2 + 4CkiteVaV −CkiteVa

2 = 0    

Rewrite 

V 2 +
4
3CkiteVa

(Cship −Ckite )
V − Ckite

(Cship −Ckite )
= 0

 

Therefore, the above equation must be solved in order to get an optimum ship’s velocity. 
 

P7.121 The Cessna Citation executive jet weighs 67 kN and has a wing area of 32 m2. It 
cruises at 10 km standard altitude with a lift coefficient of 0.21 and a drag coefficient of 
0.015. Estimate (a) the cruise speed in km/h; and (b) the horsepower required to maintain 
cruise velocity. 
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Solution: At 10 km standard altitude (Table A-6) the air density is 0.4125 kg/m3. 
(a) The cruise speed is found by setting lift equal to weight: 

Lift = 67000 N = CL
ρ
2
V 2Awing = 0.21 0.4125 kg/m3

2






V 2 (32 m2 ),

Solve V = 220 m
s
= 792 km

h
Ans. (a)

 

 
(b) With speed known, the power is found from the drag: 

 

 

P7.122 An airplane weighs 180 kN and has a wing area of 160 m2 and a mean chord of 
4 m. The airfoil properties are given by Fig. 7.25. If the plane is designed to land at Vo = 
1.2Vstall, using a split flap set at 60°, (a) What is the proper landing speed in km/h? 
(b) What power is required for takeoff at the same speed? 

Solution: For air at sea level, ρ ≈ 1.225 kg/m3. From Fig. 7.24 with the flap, CL,max ≈ 1.75 
at α ≈ 6°. Compute the stall velocity: 

  

Vstall =
2W

ρCL,max Ap
=

2(180000 N)
(1.225 kg/m3)(1.75)(160 m2 )

= 32.4 m
s

Then Vlanding = 1.2Vstall = 38.9 m
s
= 140 km / h Ans. (a)

CL =
CL,max

(Vland /Vstall )
2 =

1.75
(1.2)2 = 1.22

 

For take-off at the same speed of 38.9 m/s, we need a drag estimate. From Fig. 7.25 with a split 
flap, CD∞ ≈ 0.04. We don’t have a theory for induced drag with a split flap, so we just go along 
with the usual finite wing theory, Eq. (7.71). The aspect ratio is b/c = (40 m)/(4 m) =10. 

 

Power required = FV = (12900 N)(38.9 m/s) = 501000 W = 672 hp Ans. (b) 
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P7.123        The Transition® auto-car in Fig. 7.30 has a weight of 5.34 kN, a wingspan of 8.38 
m, and a wing area of 13.94 m2, with a symmetrical airfoil, CD∞ = 0.02.  Assume that the fuselage 
and tail section have a drag-area comparable to the Toyota Prius [21], CDA ≈ 0.58 m2.  If the 
pusher propeller provides a thrust of 1112 N, how fast, in km/h, can this car-plane fly at an 
altitude of 2.5 km? 
 
Solution:  From Table A.6, at 2500 m, air density is 0.957 kg/m3.  The wing has an aspect ratio 
AR = (8.38 m)2/(13.94 m2) =  5.04.  The wing lift and drag coefficients are 

  

CL =
2W

ρV 2 Ap

=
2(5340 N )

(0.957 kg / m3)V 2(13.94)
=

800.6
V 2

, with V in m/s.

CD,wing = CD∞ +
CL

2

π AR
= 0.020 + (800.6 / V 2 )2

π (5.04)
= 0.020 + 4.05E4

V 4

 

 
 
The total drag, including the fuselage, equals the propeller thrust: 

  

F = T = 1112 lbf = (CD Afuselage + CD,wing Ap ) ρ
2

V 2

= [0.58 + (0.020+ 4.05E4
V 4

)(13.94)](0.957
2

)V 2 ,

or : 1112 = (0.278 + 0.133 + 2.7E5
V 4

)V 2

 

The term involving (2.7E5/V4) is small.  Iterate to   Vautocar  ≈ 49.5 m/s  =  178.2 km/h   Ans. 
 

*P7.124 Suppose the airplane of Prob. 7.122 is now fitted with all the best high-lift devices 
of Fig. 7.28. (a) What is its minimum stall speed in km/h? (b) Estimate the stopping distance 
if the plane lands at Vo = 1.25Vstall with constant CL = 3.0 and CD = 0.2 and the braking force 
is 20% of the weight on the wheels. 

Solution: For air at sea level, ρ = 1.225 kg/m3. From Fig. 7.28 read CL,highest ≈ 4.0. 

(a) Then Vstall =
2 W

ρCL,maxAp
=

2(180000 N)
(1.225 kg/m3)(4.0)(160 m2 )

= 21.4 m
s

Thus Vland = 1.25Vstall = 26.8 m
s
≈ 96 km / h Ans. (a)

 

 (b) With constant lift and drag coefficients, we can set up and solve the equation of motion: 

∑Fx = m
dV
dt

= −Fdrag − Fbrake = −CD
ρ
2






V 2Ap − 0.2(Weight − Lift)  
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We could integrate this twice and calculate V = 0 (stopping) at t = 21.5 s and Smax = 360 m. Or, 
since we are looking for distance, we could convert dV/dt = (1/2)d (V2)/ds  to obtain 

 

 

P7.125      A transport plane has a mass of 45,000 kg, a wing area of 160 m2, and an aspect 
ratio of 7.  Assume all lift and drag due to the wing alone, with CD∞ = 0.020 and CL,max = 1.5.  
If the aircraft flies at 9,000 m standard altitude, make a plot of drag (in N) versus speed (from 
stall to 240 m/s) and determine the optimum cruise velocity (minimum drag per unit speed). 

Solution:  From Table A.6, at 9000 m, ρ = 0.4661 kg/m3.  First compute the stall velocity: 

V stall =
2W

ρApC L ,max

=
2(45000)(9.81N)
0.4661(160)(1.5)

= 89 m / s  

Go up from there with your drag-vs-speed plot.  For each speed, compute CL, CD, Drag: 

Given V , CL =
2W
ρV 2Ap

; CD = CD∞ +
CL
2

π AR
; Drag = CD

ρ
2
V 2 Ap  

Example:   V = 100 m/s,  CL = 1.187,  CD = 0.084,  Drag  =  31,300 N.  The plot is: 

                    
 
We see that any speed between 150 and 200 m/s is efficient.  The actual minimum is 176 m/s. 
NOTE:  Cruise speed varies with altitude and would be much lower at, say, sea-level. 
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P7.126  Show that, if Eqs. (7.70) and (7.71) are valid, the maximum lift-to-drag ratio 
occurs when CD = 2CD∞. What are (L/D)max and α for a symmetric wing when AR = 5.0 and 
CD∞ = 0.009? 

Solution: According to our lift and induced-drag approximations, Eqs. (7.70) and (7.71), the 
lift-to-drag ratio is 

 

For our numerical example, compute, at maximum L/D, 

 

Therefore, L/D|max = 0.376/0.018 ≈ 21 Ans. 

Also, CL = 0.376 = 2π sin α/[1 + 2/AR] = 2π sin α/[1 + 2/5], solve α ≈ 4.8°  Ans. 
 

P7.127 In gliding (unpowered) flight, lift and drag are in equilibrium with the weight. 
Show, that, with no wind, the craft sinks at an angle tanθ ≈ drag/lift. For a sailplane with m = 
200 kg, wing area = 12 m2, AR = 12, with an NACA 0009 airfoil, estimate (a) stall speed, (b) 
minimum gliding angle; (c) the maximum distance it can glide in still air at  z = 1200 m. 

 
Fig. P7.127 

Solution: By the geometry of the figure, with no thrust, wind, or acceleration, 

 

The NACA 0009 airfoil is shown in Fig. 7.25, with CD∞ ≈ 0.006. From Table A-6, at z = 
1200 m, ρ ≈ 1.09 kg/m3. Then, as in part (b) of Prob. 7.126 above, 

 

Thus tanθmin = 1/39.6 or θmin ≈  1.45°  Ans. (b) 
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Meanwhile, from Fig. 7.25, CL,max ≈ 1.3, so the stall speed at 1200 m altitude is 

 

With θmin = 1.45° and z = 1200 m, the craft can glide 1200/tan(1.45°) ≈ 47 km Ans. (c). 
 

 
*P7.128 A boat of mass 2500 kg has two hydrofoils, each of chord 30 cm and span 
1.5 meters, with CL,max = 1.2 and CD∞ = 0.08. Its engine can deliver 130 kW to the water. For 
seawater at 20°C, estimate (a) the minimum speed for which the foils support the boat, and 
(b) the maximum speed attainable. 
 
Solution: For seawater at 20°C, take ρ = 1025 kg/m3 and µ = 0.00107 kg/m⋅s. With two 
foils, total planform area is 2(0.3 m)(1.5 m) = 0.9 m2. Thus the stall speed is 

 

Given AR = 1.5/0.3 = 5.0. At any speed during lifting operation (V > Vmin), the lift and drag 
coefficients, from Eqs. (7.70) and (7.71), are 

 

 

Three other roots: 2 imaginary and V4 = 0.86 m/s (impossible, below stall) 

 

P7.129 In prewar days there was a controversy, perhaps apocryphal, about whether the 
bumblebee has a legitimate aerodynamic right to fly. The average bumblebee (Bombus 
terrestris) weighs 0.88 g, with a wing span of 1.73 cm and a wing area of 1.26 cm2. It can 
indeed fly at 10 m/s. Using fixed-wing theory, what is the lift coefficient of the bee at this 
speed? Is this reasonable for typical airfoils? 
 
Solution: Assume sea-level air, ρ = 1.225 kg/m3. Assume that the bee’s wing is a low-
aspect-ratio airfoil and use Eqs. (7.68) and (7.72): 
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This looks unreasonable, CL → CL,max and the bee could not fly slower than 10 m/s. 

Even if this high lift coefficient were possible, the angle of attack would be unrealistic: 

 

 

P7.130 The bumblebee can hover at zero speed by flapping its wings. Using the data of Prob. 
7.129, devise a theory for flapping wings where the downstroke approximates a short flat plate 
normal to the flow (Table 7.3) 

 

and the upstroke is feathered at nearly zero drag. How many flaps per second of such a model 
wing are needed to support the bee’s weight? (Actual measurements of bees show a flapping 
rate of 194 Hz.) 
 
Solution: Any “theory” one comes up with might be crude. As shown in the figure, let the 
wings flap sinusoidally, between ±θo, that is, θ = θo cos Ωt. Let the upstroke be feathered 
(zero force), and let the downstroke be strong enough to create a total upward force of 0.75 
W on each wing—to compensate for zero lift during upstroke. Assume a short flat plate 
(Table 7.3), CD ≈ 1.2. Then, on each strip dr of wing, the elemental drag force is 

 

 

 

 

This is about 75% higher than the measured value Ωbee ≈ 194 Hz, but it’s a crude theory! 
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P7.131 In 2001, a commercial aircraft lost all power while flying at 10 km over the open 
Atlantic Ocean, about 96 km from the Azores Islands. The pilots, with admirable skill, put 
the plane into a shallow glide and successfully landed in the Azores. Assume that the airplane 
satisfies Eqs. (7.70) and (7.71), with AR = 7, Cd∞ = 0.02, and a symmetric airfoil. Estimate its 
optimum glide distance with a mathematically perfect pilot. 
 
Solution: From Problem P7.126, the maximum lift-to-drag ratio occurs when Cd = 2Cd∞ = 
2(0.02) = 0.04 in the present case. Accordingly, for maximum L/D ratio, the lift coefficient 
is CL = [Cd∞πAR]1/2 = [0.02π (7)]1/2 = 0.663. From Prob. 7.127, the glide angle of an 
unpowered aircraft is such that tanθ = drag/lift = Cd /CL. Thus, the pilots’ optimum glide is: 

tanθmin =
Drag
Lift

|min=
0.04
0.663

=
1

16.6
=

10,000 m
Glide distance

,

or Glide =166,000 m ≈ 166 km Ans.
 

 

P7.132 Using the data for the Transition® auto-car from Prob. P7.123, and a maximum lift 
coefficient of 1.3, estimate the distance for the vehicle to take off at a speed of 1.2Vstall.  Note 
that we have to add the car-body drag to the wing drag. 
 
Solution:  For sea-level conditions, take ρ = 1.23 kg/m3.  Recall the data:  CD∞ = 0.02, Ap = 
13.94 m2, W = 5.34 kN, b = 8.38 m, AR  = b2/Ap = 5.04, CDA ≈ 0.58 m2 for the fuselage, and 
thrust  T = 1112 N.  Follow the steps in Example 7.9, adding in car-body drag. 
 

                 

  

Vstall =
2W

CL,maxρAp
=

2 5340( )
1.3( ) 1.23( ) 13.94( )

= 21.9 m/s

Vtake−off = Vo = 1.2Vstall = 1.2 21.9( ) = 26.3 m/s

CD,wing =CD∞ +
CL

2

π AR
= 0.020 +

CL
2

π(5.04)
= 0.02 + 0.0632CL

2

 

 
Find the take-off lift coefficient, the total drag, and the parameter k at take-off: 
 

                 

  

CLo =
2W

ρVo
2 Ap

=
2(5340)

(1.23)(26.3)2(13.94)
= 0.901

CDo = 0.02 + 0.0632CLo
2 = 0.02 + 0.0632(0.901)2 = 0.0713

k =
ρ
2

(CDo Ap + CD Acar ) = 1.23
2









 0.0713 13.94( ) + 0.58



 = 0.968 kg/m

Do = kVo
2 = 0.968 26.3( )2 = 669.5 N
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Finally, use the take-off distance So formula derived in Example 7.9: 
 

          
   
So =

m
2k

ln( T
T −Do

) =
5340/9.81( )
2 0.968( )

ln 1112
1112 − 669.5








= 281.2( ) 0.921( ) = 259 m Ans.  

 
The manufacturer, with better data, states that the Transition® auto-car will take off and clear 
a 15.24-m obstacle within a distance of 518 m. 
_______________________________________________________________________ 
 
P7.133 The Chap. 7 opener photo of Yves Rossy gives the following data:  thrust = 890 N, 
altitude = 2.5 km, and wing span = 2.44 m.  Further assume a wing area of 1.11 m2, total 
weight of 1246 N, CD∞ = 0.08 for the wing, and a drag area of 0.16 m2 for Rocket Man.  
Estimate the maximum velocity possible for this condition, in km/h. 
 
Solution: From Table A.6, at 2500 m, air density is 0.957 kg/m3.  The wing has an aspect 
ratio AR = b2/Ap = (2.44 m)2/(1.11 m2) =  5.36.  The wing lift and drag coefficients are 
 

                    

  

CL =
2W

ρV 2 Ap

=
2(1246 N)

(0.957 kg/m3)V 2(1.11 m2)
=

2346
V 2

, with V in m
s

CD,wing = CD∞+
CL

2

πAR
= 0.080 + (2346 / V 2 )2

π(5.36)
= 0.080 + 3.27E5

V 4

 

 
The total drag, including the fuselage, equals the rocket thrust: 
 

                   

  

F = T = 890 N = CD ARossy + CD,wing Ap( ) ρ2 V 2

890 = 0.16 + 0.080+ 3.27E5
V 4









 1.11( )











0.957
2









V 2 ,

or : 890 = 0.0766 + 0.0425 + 1.74E5
V 4









V 2

 

 
The term involving (1.74E5/V4) is very small. Iterate to   Vmax = 85.4 m/s = 307 km/h     Ans. 
Observers of Rocket Man in the Alps that day recorded Vmax ≈ 300 km/h. 
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FUNDAMENTALS OF ENGINEERING EXAM PROBLEMS: Answers 
 
FE7.1 A smooth 12-cm-diameter sphere is immersed in a stream of 20°C water moving at 6 
m/s. The appropriate Reynolds number of this sphere is 

(a) 2.3E5 (b) 7.2E5  (c) 2.3E6  (d) 7.2E6 (e) 7.2E7 
 
FE7.2 If, in Prob. FE7.1, the drag coefficient based on frontal area is 0.5, what is the drag 
force on the sphere? 

(a) 17 N (b) 51 N (c) 102 N (d) 130 N (e) 203 N 
 
FE7.3 If, in Prob. FE7.1, the drag coefficient based on frontal area is 0.5, at what terminal 
velocity will an aluminum sphere (SG = 2.7) fall in still water? 

(a) 2.3 m/s (b) 2.9 m/s (c) 4.6 m/s (d) 6.5 m/s (e) 8.2 m/s 
 
FE7.4 For flow of sea-level standard air at 4 m/s parallel to a thin flat plate, estimate the  
boundary-layer thickness at x = 60 cm from the leading edge: 

(a) 1.0 mm (b) 2.6 mm (c) 5.3 mm (d) 7.5 mm (e) 20.2 mm 
 
FE7.5 In Prob. FE7.4, for the same flow conditions, what is the wall shear stress at 
x = 60 cm from the leading edge? 

(a) 0.053 Pa (b) 0.11 Pa (c) 0.016 Pa (d) 0.32 Pa (e) 0.64 Pa 
 
FE7.6 Wind at 20°C and 1 atm blows at 75 km/h past a flagpole 18 m high and 20 cm in 
diameter. The drag coefficient based upon frontal area is 1.15. Estimate the wind-induced 
bending moment at the base of the pole. 

(a) 9.7 kN⋅m (b) 15.2 kN⋅m (c) 19.4 kN⋅m (d) 30.5 kN⋅m (e) 61.0 kN⋅m 
 
FE7.7 Consider wind at 20°C and 1 atm blowing past a chimney 30 m high and 80 cm in 
diameter. If the chimney may fracture at a base bending moment of 486 kN⋅m, and its drag 
coefficient based upon frontal area is 0.5, what is the approximate maximum allowable wind 
velocity to avoid fracture? 

(a) 80 km/h (b) 120 km/h  (c) 160 km/h  (d) 200 km/h  (e) 240 km/h 
 
FE7.8 A dust particle of density 2600 kg/m3, small enough to satisfy Stokes drag law, settles 
at 1.5 mm/s in air at 20°C and 1 atm. What is its approximate diameter? 

(a) 1.8 µm (b) 2.9 µm (c) 4.4 µ m (d) 16.8 µm (e) 234 µm 
 
FE7.9 An airplane has a mass of 19,550 kg, a wing span of 20 m, and an average wind chord 
of 3 m. When flying in air of density 0.5 kg/m3, its engines provide a thrust of 12 kN against an 
overall drag coefficient of 0.025. What is its approximate velocity? 

(a) 400 km/h  (b) 480 km/h  (c) 560 km/h  (d) 640 km/h  e) 720 km/h 
 
FE7.10 For the flight conditions of the airplane in Prob. FE7.9 above, what is its 
approximate lift coefficient? 

(a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4 (e) 0.5 
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COMPREHENSIVE PROBLEMS 
 
C7.1 Jane wants to estimate the drag coefficient of herself on her bicycle. She measures the 
projected frontal area to be 0.40 m2 and the rolling resistance to be 0.80 N⋅s/m. Jane coasts 
down a hill with a constant 4° slope. The bike mass is 15 kg, Jane’s mass is 80 kg. She 
reaches a terminal speed of 14 m/s down the hill. Estimate the aerodynamic drag coefficient 
CD of the rider and bicycle combination. 
 
Solution: For air take ρ ≈ 1.2 kg/m3. Let x be down the hill. Then a force balance is 
 

 

 
Solve for, and evaluate, the drag coefficient: 
 

 

 

 
 

Fig. C7.1 
 

C7.2 Air at 20°C and 1 atm flows at Vavg = 5 m/s between long, smooth parallel heat-
exchanger plates 10 cm apart, as shown below. It is proposed to add a number of widely 
spaced 1-cm-long thin ‘interrupter’ plates to increase the heat transfer, as shown. Although 
the channel flow is turbulent, the boundary layer over the interrupter plates is laminar. 
Assume all plates are 1 m wide into the paper. Find (a) the pressure drop in Pa/m without the 
small plates present. Then find (b) the number of small plates, per meter of channel length, 
which will cause the overall pressure drop to be 10 Pa/m. 
 

 
 

Fig. C7.2 
 

Solution: For air, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. (a) For wide plates, the 
hydraulic diameter is Dh = 2h = 20 cm. The Reynolds number, friction factor, and pressure 
drop for the bare channel (no small plates) is: 
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Each small plate (neglecting the wake effect if the plates are in line with each other) has a 
laminar Reynolds number: 
 

 

 
Each plate force must be supported by the channel walls. The effective pressure drop will be 
the bare wall pressure drop (assumed unchanged) plus the sum of the interrupter-plate forces 
divided by the channel cross-section area, which is given by (h × 1 m) = 0.1 m2. The extra 
pressure drop provided by the plates, for this problem, is (10.0 − 1.47) = 8.53 Pa/m. Therefore 
we need 
 

 

 
This is the number of small interrupter plates needed for each meter of channel length to 
build up the pressure drop to 10.0 Pa/m. 

 

C7.3 A new pizza store needs a delivery car with a sign attached. The sign is 0.46 m high 
and 1.5 m long. The boss wants to mount the sign normal to the car’s motion. His employee, 
a student of fluid mechanics, suggests mounting it parallel to the motion. 
(a) Calculate the drag on the sign alone at 64 km/h (17.8 m/s) in both orientations. (b) The car 
has a rolling resistance of 178 N, a drag coefficient of 0.4, and a frontal area of 3.72 m2. 
Calculate the total drag of the car-sign combination at 64 km/h. (c) Include rolling resistance 
and calculate the horsepower required in both orientations. (d) If the engine delivers 1.97 kW 
for 1 hour on a litre of gasoline, calculate the fuel efficiency in km/L in both orientations, at 
64 km /h. 
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Solution: For air take ρ = 1.23 kg/m3. (a) Table 7.3, blunt plate, CD ≈ 1.2: 
 

Fnormal = CD
ρ
2
V 2A =1.2 1.23

2






 17.8( )2 0.46 ×1.5( ) ≈ 161 N Ans. (a—normal)  

 
For parallel orientation, take µ = 1.8E−5 N⋅s/m2. Use flat-plate theory for ReL = 
(1.23)(17.8)(1.5)/(1.8E−5) = 1.82E6 = transitional—use Eq. (7.49a): 
 

CD =
0.031
ReL

1/7 −
1440
ReL

=
0.031

1.82E6( )1/7
−
1440
1.82E6

≈ 0.00316  

Fparallel = 0.00316 1.23
2







(17.8)2 (0.46 ×1.5 × 2 sides) ≈ 0.85N Ans. (a—parallel)  

(b) Add on the drag of the car: 
 

Fcar = CD,car
ρ
2
V 2Acar = 0.4 1.23

2






(17.8)2 (3.72) ≈ 290 N  

 
(1) sign ⊥: Total Drag = 290 + 161 ≈ 451 Ans. (b—normal) 

 
(2) sign //: Total Drag = 290 + 0.85 ≈ 290.85 Ans. (b—parallel) 

 
(c) Horsepower required = total force times velocity (include rolling resistance): 
 
(1) P⊥ = FV = (451 + 178)(17.8) = 11.2 kW ≈ 15 hp Ans. (c—normal) 
 
(2) P // = (290.85 + 178)(17.8) = 8.35 kW ≈ 11.2 hp Ans. (b—parallel) 
 
(d) Fuel efficiency: 
 

(1) mpg⊥ = 64 km
h







 1.97 kW/h

L








1
11.2 kW






 ≈ 11.3 km

L
Ans. (d—normal)

(2) mpg/ / = 64 km
h







 1.97 kW/h

L








1
8.35 kW






 ≈ 15.1 km

L
Ans. (d—parallel)

 

 
We see that the student is correct, there are fine 25% savings with the sign parallel. 

 

C7.4 Consider a simple pendulum with an unusual bob shape: a cup of diameter D whose 
axis is in the plane of oscillation. Neglect the mass and drag of the rod L. (a) Set up the 
differential equation for θ (t) and (b) non-dimensionalize this equation. (c) Determine the 
natural frequency for  (d) For L = 1 m, D = 1 cm, m = 50 g, and air at 20°C and 1 atm, 
and θ (0) = 30°, find (numerically) the time required for the oscillation amplitude to drop  
to 1°. 
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Fig. C7.4 
 
Solution: (a) Let Leq = L + D/2 be the effective length of the pendulum. Sum forces in the 
direction of the motion of the bob and rearrange into the basic 2nd-order equation: 
 

 

 

 

 
Note that CD ≈ 0.4 when moving to the right and about 1.4 moving to the left (Table 7.3). 
(b) Now θ is already dimensionless, so define dimensionless time t = t(g/Leq)1/2 and 
substitute into the differential equation above. We obtain the dimensionless result 
 

 

 
Thus the only dimensionless parameter is K from part (a) above. 
 
c) For  the term involving K is neglected, and sinθ ≈ θ itself. We obtain 
 

 

 
Thus the natural frequency is (g/Leq)1/2 just as for the simple drag-free pendulum. Recall that 
Leq = L + D/2. Note again that K has a different value when moving to the right 
(CD ≈ 0.4) or to the left (CD ≈ 1.4). 
 
(d) For the given data, ρair = 1.2 kg/m3, Leq = L + D/2 = 1.05 m, and the parameter K is 
 

 

= 0.1385 (moving to the left)  
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The differential equation from part (b) is then solved for θ (0) = 30° = π /6 radians. The 
natural frequency is (9.81/1.05)1/2 = 3.06 rad/s, with a dimensionless period of 2π. Integrate 
numerically, with Runge-Kutta or MatLab or Excel or whatever, until  θ = 1° = π/180 
radians. The time-series results are shown in the figure below. 
 

We see that the pendulum is very lightly damped—drag forces are only about 1/50th of the 
weight of the bob. After ten cycles, the amplitude has only dropped to 22.7°—we will never 
get down to 1° in the lifetime of my computer. The dimensionless period is 6.36, or only 1% 
greater than the simple drag-free theoretical value of 2π. 
 
 

 
 


