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5.1 For axial flow through a circular tube, the Reynolds number for transition to turbulence is 
approximately 2300 [see Eq. (6.2)], based upon the diameter and average velocity. If d = 5 cm 
and the fluid is kerosene at 20°C, find the volume flow rate in m3/h which causes transition. 
 
Solution: For kerosene at 20°C, take ρ = 804 kg/m3 and µ = 0.00192 kg/m⋅s. The only 
unknown in the transition Reynolds number is the fluid velocity: 

 
Retr ≈ 2300 = ρVd

µ
=

(804)V(0.05)
0.00192

, solve for Vtr = 0.11 m/s  

Then Q =VA = (0.11) π
4

(0.05)2 = 2.16E−4 m3

s
× 3600 ≈ 0.78 m

3

hr
Ans.  

 

P5.2  A prototype automobile is designed for cold weather in Denver, CO (-10°C, 83 kPa).  
Its drag force is to be tested in on a one-seventh-scale model in a wind tunnel at 150 mi/h and 
at 20°C and 1 atm.  If model and prototype satisfy dynamic similarity, what prototype 
velocity, in mi/h, is matched?  Comment on your result. 

Solution:   First assemble the necessary air density and viscosity data: 

Denver : T = 263K ; ρ p =
p
RT

=
83000
287(263)

= 1.10 kg
m3 ; µ p = 1.75E − 5

kg
m − s

Wind tunnel : T = 293K ; ρm =
p
RT

=
101350
287(293)

= 1.205 kg
m3 ; µm = 1.80E − 5

kg
m − s

 

Convert 150 mi/h = 67.1 m/s.  For dynamic similarity, equate the Reynolds numbers: 

Re p =
ρVL
µ

|p =
(1.10)Vp (7Lm )
1.75E − 5

= Rem =
ρVL
µ

|m =
(1.205)(67.1)(Lm )

1.80E − 5

Solve for Vprototype = 10.2m / s = 22.8 mi / h Ans.
 

This is too slow, hardly fast enough to turn into a driveway.  Since the tunnel can go no faster,  
the model drag must be corrected for Reynolds number effects.  Note that we did not need to 
know the actual length of the prototype auto, only that it is 7 times larger than the model 
length. 
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P5.3  The transfer of energy by viscous dissipation is dependent upon viscosity µ, 
thermal conductivity k, stream velocity U, and stream temperature To.  Group these quantities, 
if possible, into the dimensionless Brinkman number, which is proportional to µ. 
 
Solution:  Here we have only a single dimensionless group.  List the dimensions, from Table 
5.1: 

  

µ k U To

{ML-1T-1} {MLT-3Θ-1} {LT-1} {Θ}
 

Four dimensions, four variables (MLTΘ) – perfect for making a pi group.  Put µ in the 
numerator: 

  Brinkman number = k a U b To
c µ1 yields Br = µU 2 / (kTo ) Ans.  

 

5.4 When tested in water at 20°C flowing at 2 m/s, an 8-cm-diameter sphere has a measured 
drag of 5 N. What will be the velocity and drag force on a 1.5-m-diameter weather balloon 
moored in sea-level standard air under dynamically similar conditions? 
 
Solution: For water at 20°C take ρ ≈ 998 kg/m3 and µ ≈ 0.001 kg/m⋅s. For sea-level standard 
air take ρ ≈ 1.2255 kg/m3 and µ ≈ 1.78E-5 kg/m⋅s. The balloon velocity follows from dynamic 
similarity, which requires identical Reynolds numbers: 

Remodel =
ρVD
µ
|model=

998(2.0)(0.08)
0.001

=1.6E5 = Reproto =
1.2255Vballoon (1.5)

1.78E−5
 

or Vballoon ≈ 1.55 m/s.  Ans.    Then the two spheres will have identical drag coefficients: 

CD,model =
F

ρV2D2 =
5 N

998(2.0)2 (0.08)2 = 0.196 = CD,proto =
Fballoon

1.2255(1.55)2 (1.5)2  

 Solve for Fballoon ≈ 1.3 N Ans.  
 

5.5 An automobile has a characteristic length and area of 2.45 m and 5.57 m2, respectively. 
When tested in sea-level standard air, it has the following measured drag force versus speed: 

  V, km/h:  32   64  96 
   Drag, N:  137.9  511.5  1107.6    

The same car travels in Colorado at 104 km/h at an altitude of 3500 m. Using dimensional 
analysis, estimate (a) its drag force and (b) the horsepower required to overcome air drag. 

Solution: For sea-level air in SI units, take ρ ≈ 1.23 kg/m3  and µ ≈ 1.79 ×10−5 N ⋅ s/m2 . 
Convert the raw drag and velocity data into dimensionless form: 

V (km/h): 32 64 96 

CD = F/(ρV2L2): 0.236 0.219 0.211 

ReL = ρVL/µ: 1.50E6 3.00E6 4.50E6 
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Drag coefficient plots versus Reynolds number in a very smooth fashion and is well fit (to ±1%) 
by the Power-law formula CD ≈ 1.07ReL−0.106. 
(a) The new velocity is V = 29.06 m/s, and for air at 3500-m Standard Altitude 
(Table A-6) take ρ  = 0.8633 kg/m3  and calculate µ  from power-law 

µ
µ0

 = T
T0











0.7

, µ ≈ 1.68 ×10−5 N ⋅ s/m2

Then compute the new Reynolds number and use our power-law above to estimate drag coefficient:

 

 
ReColorado =

ρVL
µ

=
0.8633( ) 29.06( ) 2.45( )

1.68 ×10−5
= 3.66 ×106, hence  

 
CD ≈

1.07
(3.66E6)0.106 = 0.2156, ∴ F = 0.2156 0.8633( ) 29.06( ) 2 2.45( )2 8.0( )2 = 943.5 N Ans. (a)

 
(b) The horsepower required to overcome drag is 

Power = FV = 943.5( ) 29.06( ) = 27417.6 W÷ 550 = 36.77 hp Ans. (b)  
 

P5.6  The full-scale parachute in the chapter-opener photo had a drag force of 
approximatly 4225 N when tested at a velocity of 19 km/h in air at 20°C and 1 atm.  Earlier, a 
model parachute of diameter 1.7 m was tested in the same tunnel.  (a) For dynamic similarity, 
what should be the air velocity for the model?  (b) What is the expected drag force of the 
model?  (c) Is there anything surprising about your result to part (b)? 

Solution: (a) From Table A.2 for air at 20C, ρ = 1.20 kg/m3 and µ = 1.8E-5 kg/m-s.  (a) For 
similarity, equate the Reynolds numbers: 

   

Re p =
ρ pVpDp

µ p
=

(1.20)(5.28)(16.8)
1.8E −5

= 5.91E6 = Rem =
ρmVmDm
µm

=
(1.20)(Vm)(1.7)

1.8E −5

Solve for Vm = 52.2 m
s
= 187.8 km

h
Ans.(a)

 

(b)  For similarity, the force coefficients will be equal: 

  

CFp =
Fp

ρ pVp
2Dp

2
=

4225 N
(1.20)(5.28)2(16.8)2

= 0.447 =
Fm

ρmVm
2Dm

2
=

Fm

(1.20)(52.2)2(1.7)2

Solve for Fm = 4225 N Ans.(b)

 

(c) It might be surprising that the drag forces are exactly the same for model and prototype!  
This is because, if ρ and µ are the same, the product VD is the same for both and the force is 
proportional to (VD)2. 
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5.7 A body is dropped on the moon (g = 1.62 m/s2) with an initial velocity of 12 m/s.  
By using option-2 variables, Eq. (5.11), the ground impact occurs at t ** = 0.34  and 
S ** = 0.84.  Estimate (a) the initial displacement, (b) the final displacement, and  
(c) the time of impact. 
 
Solution: (a) The initial displacement follows from the “option 2” formula, Eq. (5.12): 

S** = gSo/Vo
2 + t**+ 1

2
t**2 = 0.84 = (1.62)So

(12)2
+ 0.34 + 1

2
(0.34)2  

Solve for So ≈ 39 m Ans. (a)  

(b, c) The final time and displacement follow from the given dimensionless results: 

S** = gS/Vo
2 = 0.84 = (1.62)S/(12)2, solve for Sfinal ≈ 75m Ans. (b)  

t** = gt/Vo = 0.34 = (1.62)t/(12), solve for timpact ≈ 2.52 s Ans. (c)  
 

5.8 The Morton number Mo, used to correlate bubble-dynamics studies, is a dimensionless 
combination of acceleration of gravity g, viscosity µ, density ρ, and surface tension coefficient Y. 
If Mo is proportional to g, find its form. 
 
Solution: The relevant dimensions are {g} = {LT−2}, {µ} = {ML−1T−1}, {ρ} = {ML−3}, and 
{Y} = {MT−2}. To have g in the numerator, we need the combination: 

{Mo} = {g}{µ}a{ρ}b{Y}c = L
T 2{ } M

LT{ }
a M
L3{ }

b M
T 2{ }

c

= M 0L0T 0  

Solve for a = 4,  b = −1,  c = −3, or: Mo = gµ
4

ρY3
Ans.  

 

P5.9 The Richardson number, Ri, which correlates the production of turbulence by 
buoyancy,  
is a dimensionless combination of the acceleration of gravity g, the fluid temperature To, the 
local temperature gradient ∂T/∂z, and the local velocity gradient ∂u/∂z.  Determine the form of 
the Richardson number if it is proportional to g. 

Solution:   In the {MLTΘ} system, these variables have the dimensions {g} = {L/T2}, {To} 
= {Θ}, {∂T/∂z} = {Θ/L}, and {∂u/∂z} = {T-1}.  The ratio g/(∂u/∂z)2 will cancel time, leaving 
{L} in the numerator, and the ratio {∂T/∂z}/To will cancel {Θ}, leaving {L} in the 
denominator.  Multiply them together and we have the standard form of the dimensionless 
Richardson number: 

Ri =
g ∂T

∂z








To
∂u
∂z







2 Ans.  
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P5.10 Total resistance for ship motion is a complicated problem. However, the resistance 
can be written as a function of water density, ρ , viscosity,µ , ship speed,ν , ship’s 
characteristic length, l, and gravitational acceleration, g. Under dimensional analysis, we 
found that the dimensionless relationship is 

F
ρv2l2

= g(Re,(Fr)2 )  

what would be a problem in using this relationship? 

Solution:  For complete similarity between a prototype and its model the Reynolds number and 
Froude number must be the same, which are 

ρ pν plp
µ p

=
ρmνmlm
µm

   (1) 

for Reynolds number and 

ν p

(gplp )
1/2 =

νm

(gmlm )
1/2     (2) 

for Froude number, 

Eq. (1) give vm
vp

=
ρ p

ρm










lp
lm










µm

µ p









. Eq. (2) give vm

vp
=

lm
lp











1/2

.  

Since gm = gp ,  these two equalities lead to lm
lp











3/2

=
vm
vp

 

If  lm is much smaller or larger than lp, we would not be able to find different fluids that have such 
kinematic viscosity ratio. Therefore, both similarities cannot be satisfied at the same time. 

 

5.11 Determine the dimension {MLTΘ} of the following quantities: 

(a) ρu ∂u
∂x

(b) (p − p0 )dA (c) ρcp
∂2T
∂x∂y1

2

∫ (d) ρ
∂u
∂t
dx dydz∫∫∫  

All quantities have their standard meanings; for example, ρ is density, etc. 
 
Solution: Note that {∂u/∂x} = {U/L}, { ∫ pdA}={pA},  etc. The results are: 

(a) M
L2T2{ }; (b) ML

T2{ }; (c) M
L3T2{ }; (d) ML

T2{ } Ans.  

 

P5.12     During World War II, Sir Geoffrey Taylor, a British fluid dynamicist, used 
dimensional analysis to estimate the wave speed of an atomic bomb explosion.  He assumed 
that the blast wave radius R was a function of energy released E, air density ρ, and time t.  Use 
dimensional analysis to show how wave radius must vary with time. 
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Solution:  The proposed function is R  = f(E, ρ, t).  There are four variables (n = 4) and three 
primary dimensions (MLT, or j = 3), thus we expect  n-j = 4-3 = 1 pi group.  List the 
dimensions: 

{R} = {L} ; {E} = {ML2 / T2} ; {ρ} = {M/L3} ; {t} = {T}  

Assume arbitrary exponents and make the group dimensionless: 

R1 Ea ρb t c = (L)1 (ML2 / T2 )a (M/L3)b (T)c = M0 L0 T0 ,

whence a+b= 0 ; 1+2a−3b = 0 ; − 2a+c=0 ; Solve a= − 1
5
; b=+ 1

5
; c = − 2

5

 

The single pi group is 

  
Π1 =

R ρ1/5

E1/5 t2/5
= constant,   thus Rwave ∝ t2/5 Ans.  

 

5.13 The Stokes number, St, used in particle-dynamics studies, is a dimensionless combination 
of five variables: acceleration of gravity g, viscosity µ, density ρ, particle velocity U, and particle 
diameter D. (a) If St is proportional to µ and inversely proportional to g, find its form. (b) Show 
that St is actually the quotient of two more traditional dimensionless groups. 

Solution: (a) The relevant dimensions are {g} = {LT−2}, {µ} = {ML−1T−1}, {ρ} = {ML−3}, {U} 
= {LT−1}, and {D} = {L}. To have µ in the numerator and g in the denominator, we need the 
combination: 

{St} = {µ}{g}−1{ρ}a{U}b{D}c = M
LT{ } T 2

L









M
L3{ }a L

T{ }b {L}c = M 0L0T 0  

  
Solve for a = −1,  b =1,  c = −2, or: St = µU

ρgD2
Ans. (a)  

   
This has the ratio form: St = U 2/(gD)

ρUD/µ
=

Froude number
Reynolds number

Ans. (b)  

 

5.14 The speed of propagation C of a capillary (very small) wave in deep water is known to be 
a function only of density ρ, wavelength λ, and surface tension Y. Find the proper functional 
relationship, completing it with a dimensionless constant. For a given density and wavelength, 
how does the propagation speed change if the surface tension is doubled? 
 
Solution: The “function” of ρ, λ, and Y must have velocity units. Thus 

{C} = {f(ρ,λ,Y)}, or C = const ρaλbYc, or: L
T{ } = M

L3{ }
a

{L}b M
T2{ }

c

 

Solve for a = b = −1/2 and c = +1/2, or: C = const  Y
ρλ

Ans.  

Thus, for constant ρ and λ, if Y is doubled, C increases as 2, or +41%. Ans.  
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P5.15     The thrust F of a propeller is generally thought to be a function of its diameter D and 
angular velocity Ω, the forward speed V, and the density ρ and viscosity µ of the fluid.  
Rewrite this relationship as a dimensionless function. 

Solution:  Write out the function with the various dimensions underneath: 

F = fcn( D , Ω , V , ρ , µ )

{ML /T 2} {L} {1 /T} {L /T} {M / L3} {M / LT}
 

There are 6 variables and 3 primary dimensions (MLT), and we quickly see that j = 3, because 

(r, V, D) cannot form a pi group among themselves.  Use the pi theorem to find the three pi’s: 

Π1 = ρ
aV bDcF ; Solve for a = −1, b = −2, c =− 2. Thus Π1 =

F
ρV 2D2

Π2 = ρ
aV bDcΩ ; Solve for a = 0, b = −1, c = 1. Thus Π2 =

ΩD
V

Π3 = ρ
aV bDcµ ; Solve for a = −1, b = −1, c =−1. Thus Π3 =

µ
ρVD  

Thus one of many forms of the final desired dimensionless function is 

F
ρV 2D2 = fcn(ΩD

V
, µ
ρVD

) Ans.
 

 

P5.16     The volume flow Q through an orifice plate is a function of pipe diameter D, pressure 
drop Δp across the orifice, fluid density ρ and viscosity µ, and orifice diameter d.  Using D, ρ, 
and Δp as repeating variables, express this relationship in dimensionless form. 
 
Solution:  There are 6 variables and 3 primary dimensions (MLT), and we already know that  
j = 3, because the problem thoughtfully gave the repeating variables.  Use the pi theorem to find 
the three pi’s:   

Π1 = D
aρbΔpcQ ; Solve for a = −2, b =1 / 2, c =−1 / 2. Thus Π1 =

Qρ1/2

D2 Δp1/2

Π2 = D
aρbΔpcd ; Solve for a = −1 b =0 c = 0. Thus Π1 =

d
D

Π3 = D
aρbΔpcµ ; Solve for a = −1, b =−1 / 2, c =−1 / 2. Thus Π1 =

µ
Dρ1/2Δp1/2

 

The final requested orifice-flow function (see Sec. 6.12 later for a different form) is: 

Qρ1/2

D2 Δp1/2
= fcn( d

D
, µ
Dρ1/2Δp1/2

) Ans.  
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5.17 The size d of droplets produced by a liquid spray nozzle is thought to depend upon the 
nozzle diameter D, jet velocity U, and the properties of the liquid ρ, µ, and Y. Rewrite this 
relation in dimensionless form.  Hint: Take D, ρ, and U as repeating variables. 
 
Solution: Establish the variables and their dimensions: 

  d = fcn(   D  ,  U ,   ρ  ,    µ   ,   Y  ) 

{L}   {L}   {L/T}   {M/L3}  {M/LT}   {M/T2} 

Then n = 6 and j = 3, hence we expect n − j = 6 − 3 = 3 Pi groups, capable of various 
arrangements and selected by the writer, as follows: 

Typical final result: d
D
= fcn ρUD

µ
,  ρU

2D
Y









 Ans.  

 

P5.18     The time td  to drain a liquid from a hole in the bottom of a tank is a function of the 
hole diameter d, the initial fluid volume υo, the initial liquid depth ho, and the density ρ and 
viscosity µ of the fluid.  Rewrite this relation as a dimensionless function, using Ipsen’s 
method. 

Solution:   As asked, use Ipsen’s method.  Write out the function with the dimensions beneath: 

td = fcn( d , υo , ho , ρ , µ )

{T} {L} {L3} {L} {M / L3} {M / LT}
 

Eliminate the dimensions by multiplication or division.  Divide by µ to eliminate {M}: 

td = fcn( d , υo , ho , ρ
µ

, µ )

{T} {L} {L3} {L} {T / L2}
 

Recall Ipsen’s rules:  Only divide into variables containing mass, in this case only ρ.  Now 
eliminate {T}.   Again only one division is necessary: 

tdµ
ρ

= fcn( d , υo , ho , ρ
µ

)

{L2} {L} {L3} {L}  
 

Finally, eliminate {L} by dividing by appropriate powers of d.  This completes our task when 
we discard d: itself: 

tdµ
ρ d 2

= fcn( υo
d 3

, ho
d
) Ans.

{1} {1} {1}  
Just divide out the dimensions, don’t worry about j or selecting repeating variables.  Of 
course, the Pi Theorem would give the same, or comparable, results. 
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5.19 When fluid in a pipe is accelerated linearly from rest, it begins as laminar flow and then 
undergoes transition to turbulence at a time ttr which depends upon the pipe diameter D, fluid 
acceleration a, density ρ, and viscosity µ. Arrange this into a dimensionless relation between ttr 
and D. 
 
Solution: Establish the variables and their dimensions: 

  ttr    = fcn(  ρ  , D  ,  a  ,    µ   ) 

{T}     {M/L3}   {L}  {L/T2}   {M/LT} 

Then n = 5 and j = 3, hence we expect n − j = 5 − 3 = 2 Pi groups, capable of various 
arrangements and selected by the writer, as required, to isolate ttr versus D: 

ttr
ρa2
µ















1/3

= fcn D ρ2a
µ2











1/3













Ans.  

 

P5.20 When a large tank of high-pressure ideal gas discharges through a nozzle, the 
maximum exit mass flow  is a function of tank pressure po and temperature To, gas constant 
R, specific heat cp, and nozzle diameter D.  Rewrite this as a dimensionless function.  Check 
to see if you can use (po, To , R, D) as repeating variables. 

Solution:  Using Table 5.1, write out the dimensions of the six variables: 

         
   

m po To R D cp

{MT −1} {ML−1T −2} {Θ} {L2T −2Θ−1} {L} {L2T −2Θ−1}
 

By inspection, we see that (po, To , R, D) are indeed good repeating variables.  There are two 
pi groups: 

                 

   

Π1 = po
a To

b Rc cp
d
m1 yields Π1 =

m RTo

po D2

Π2 = po
a To

b Rc cp
d cp

1 yields Π1 =
cp

R

Thus
m RTo

po D2
= fcn(

cp

R
) Ans.

 

The group (cp/R) = k/(k-1), where k = cp/cv .  We usually write the right hand side as fcn(k). 
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5.21 The rate of heat loss, Qloss through a window is a function of the temperature difference 
ΔT, the surface area A, and the R resistance value of the window (in units of m2⋅s⋅°K/J): Qloss = 
fcn(ΔT, A, R). (a) Rewrite in dimensionless form. (b) If the temperature difference doubles, how 
does the heat loss change? 
 
Solution: First figure out the dimensions of R: {R} = {T3Θ/M}. Then note that n = 4 variables 
and j = 3 dimensions, hence we expect only 4 − 3 = one Pi group, and it is: 

Π1 =
QlossR
AΔT

= Const, or:  Qloss = Const
AΔT
R

Ans. (a)  

(b) Clearly (to me), Q ∝ ΔT: if ΔT doubles, Qloss also doubles. Ans. (b) 
 

5.22 The wall shear stress τw in a boundary layer is assumed to be a function of stream velocity 
U, boundary layer thickness δ, local turbulence velocity u′, density ρ, and local pressure gradient 
dp/dx. Using (ρ, U, δ ) as repeating variables, rewrite this relationship as a dimensionless 
function. 
 
Solution: The relevant dimensions are {τw} = {ML−1T−2}, {U} = {LT−1}, {δ} = {L}, {u′} = 
{LT−1}, {ρ} = {ML−3}, and {dp/dx} = {ML−2T−2}. With n = 6 and j = 3, we expect n − j = k = 3 
pi groups:  

Π1 = ρ
aUbδcτw =

M
L3{ }a L

T{ }b {L}c M
LT 2{ } = M 0L0T 0, solve a = −1,  b = −2,  c = 0  

Π2 = ρ
aUbδc ′u =

M
L3{ }a L

T{ }b {L}c L
T{ } = M 0L0T 0, solve a = 0,  b = −1,  c = 0  

Π3 = ρ
aUbδc

dp
dx

=
M
L3{ }a L

T{ }b {L}c M
L2T 2{ } = M 0L0T 0, solve a = −1,  b = −2,  c =1  

The final dimensionless function then is given by: 

Π1 =  fcn(Π2,Π3), or: τw
ρU2

= fcn ′u
U
,  dp
dx

δ
ρU2









 Ans.  

 

P5.23 If you disturb a tank of length L and water depth h, the surface will oscillate back and 
forth at frequency Ω, assumed here to depend also upon water density ρ and the acceleration 
of gravity g.  (a) Rewrite this as a dimensionless function.  (b) If a tank of water sloshes at 2.0 
Hz on earth, how fast would it oscillate on Mars (g ≈ 3.7 m/s2)? 

Solution:  Write out the dimensions of the five variables.  We hardly even need Table 5.1: 

                
  

Ω h L ρ g

{T −1} {L} {L} {ML−3} {LT −2}
 

(a) There are five variables and three dimensions {MLT}, hence we expect two pi groups.   
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The writer thinks Ω should be correlated versus h, so he chooses (L, ρ, g) as repeating 
variables: 

                      

  

Π1 = La ρb gcΩ1 yields Π1 = Ω
L
g

Π2 = La ρb gc h1 yields Π2 =
h
L

Thus Ω
L
g

= fcn( h
L

) Ans.(a)

 

Note that density drops out, being the only variable containing mass {M}.  If the tank sloshes 
on earth at 2.0 Hz, that sets the value of Π1, which we use on Mars to get ΩMars at the same 
h/L. 

  
Ωearth

L
gearth

= (2.0s−1) L
9.81m / s2

= 0.639m−1/2 L = ΩMars
L

gMars
= ΩMars

L
3.7 m / s2

 

   Solve for ΩMars ≈ 1.23 Hz Ans.(b)  

 

5.24 A fish robot was designed to simulate a fish’s motion. From observations, we found that 
the fish propulsion depends on water density, ρ , viscosity, µ , caudal fin frequency, ω , average 
forward speed, v, and heaving angle of its body and pitching angle of its caudal fin with respect to 
its forward direction, φ and θ , respectively. Derive this relationship in dimensionless form. 
 
Solution: From the problem, the relation can be written as follows: 

F = f ρ,µ,ω,ν,φ,θ( )  
step 1. Count the variables, η = 7  

step 2. Use the MLTΘ{ } system to write out the dimensions of the variables. 

 
step 3. Using ρ , µ and v as repeating variables, but we need to check whether ρ , µ , and v do 
not form a pi-group. Luckily, we can use ρ , µ  and v as repeating variables after checking.  
Therefore, j = 3. 

step 4 (a)  Combine (ρ , µ , v) with force F to find the first pi group: 

π1 = ρ
aµbvcF = ML−3( )a ML−1T−1( )b LT−1( )c MLT−2( ) =MoLoTo  
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Solve the above equation to get a =1,  b = −2,  c = 0. 
 (b) Again combine  (ρ , µ , v) with caudal fin frequency ω  to find the second pi group: 

π2 = ρ
aµbvcω = ML−3( )a ML−1T−1( )b LT−1( )c T−1( ) =MoLoTo  

we then get a = −1,  b =1,  c = −2.   

For φ and θ, they are already in pi groups. Therefore, we can write four dimensionless groups as 

step 5.   π1 = g π2 ,  π 3,  π 4( )  

Fρ
µ2 = g ωµ

ρv2 ,  φ,  θ








  

Note that this relation needs experimental results to confirm. 
 

5.25 Under laminar conditions, the volume flow Q through a small triangular-section pore of 
side length b and length L is a function of viscosity µ, pressure drop per unit length Δp/L, and b. 
Using the pi theorem, rewrite this relation in dimensionless form. How does the volume flow 
change if the pore size b is doubled? 

 
Solution: Establish the variables and their dimensions: 

    Q  = fcn(Δp/L   ,   µ   ,  b ) 

{L3/T}   {M/L2T2}  {M/LT}  {L} 

Then n = 4 and j = 3, hence we expect n − j = 4 − 3 = 1 Pi group, found as follows: 

Π1 = (Δp/L)
a (µ)b (b)cQ1 = {M/L2T2}a{M/LT}b{L}c{L3/T}1 =M0L0T0  

M: a + b = 0; L: −2a – b + c + 3 = 0; T: −2a – b – 1 = 0,  

solve a = −1, b = +1, c = −4 

Π1 =
Qµ

(Δp/L)b4
= constant Ans.  

Clearly, if b is doubled, the flow rate Q increases by a factor of 24 =   16. Ans. 
 

5.26 The period of oscillation T of a water surface wave is assumed to be a function of density 
ρ, wavelength λ, depth h, gravity g, and surface tension Y. Rewrite this relationship in 
dimensionless form. What results if Y is negligible? 

Solution: Establish the variables and their dimensions: 
  T   = fcn(  ρ  ,   λ ,  h  ,      g ,  Y  ) 

{T}     {M/L3}   {L}  {L}  {L/T2} {M/T2} 
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Then n = 6 and j = 3, hence we expect n − j = 6 − 3 = 3 Pi groups, capable of various 
arrangements and selected by the writer as follows: 

Typical final result: T(g/λ)1/2 = fcn h
λ
, Y
ρgλ2









 Ans.  

If Y is negligible, ρ drops out also, leaving: T(g/λ)1/2 = fcn h
λ







 Ans.  

 

5.27 A certain axial-flow turbine has an output torque M which is proportional to the volume 
flow rate Q and also depends upon the density ρ, rotor diameter D, and rotation rate Ω. How 
does the torque change due to a doubling of (a) D and (b) Ω? 
 
Solution: List the variables and their dimensions, one of which can be M/Q, since M is stated 
to be proportional to Q: 

  M/Q = fcn(   D  ,   ρ  , Ω ) 

{M/LT}   {L} {M/L3} {1/T} 

Then n = 4 and j = 3, hence we expect n − j = 4 − 3 = 1 single Pi group: 

M/Q
ρΩD2 = dimensionless constant  

(a) If turbine diameter D is doubled, the torque M increases by a factor of 4. Ans. (a) 

(b) If turbine speed Ω is doubled, the torque M increases by a factor of 2. Ans. (b) 
 

P5.28     When disturbed, a floating buoy will bob up and down at frequency f.  Assume that this 
frequency varies with buoy mass m and waterline diameter d and with the specific weight g of the 
liquid.  (a)  Express this as a dimensionless function.  (b) If d and g are constant and the buoy 
mass is halved, how will the frequency change? 
 
Solution:   The proposed function is    f   =  fcn( m, d, g ).  Write out their dimensions: 

{ f } = {T −1} ; {m} = {M} ; {d} = {L} ; {γ} = {ML−2T −2}  

There are four variables and j = 3.  Hence we expect only one Pi group.  We find that 

Π1 =
f
d

m
γ

= constant Ans.(a)
 

Hence, for these simplifying assumptions,  f  is proportional to  m-1/2.   If m halves, f  rises by a 
factor  (0.5)-1/2  =  1.414.  In other words, halving m increases  f  by about 41%.     Ans.(b) 
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P5.29  A fixed cylinder of diameter D and length L, immersed in a stream flowing 
normal to its axis at velocity U, will experience zero average lift.  However, if the cylinder is 
rotating at angular velocity Ω, a lift force F will arise.  The fluid density ρ is important, but 
viscosity is secondary and can be neglected.  Formulate this lift behavior as a dimensionless 
function. 
 
Solution:  No suggestion was given for the repeating variables, but for this type of problem 
(force coefficient, lift coefficient), we normally choose (ρ, U, D) for the task.  List the 
dimensions: 

  

D L U Ω F ρ

{L} {L} {LT-1} {T-1} {MLT-2} {ML-3}
 

There are three dimensions (MLT), which we knew when we chose (ρ, U, D).  Combining 
these three, separately, with F, Ω, and L, we find this dimensionless function: 

  

F
ρU 2 D2

= fcn( ΩD
U

, L
D

) Ans.  

This is a correct solution for Chapter 5, but in Chapter 8 we will use the “official” function, 
with extra factors of (1/2): 

  

F
(1 / 2)ρU 2LD

= fcn( ΩD
2U

, L
D

)  

 

5.30 The period T of vibration of a beam is a function of its length L, area moment of inertia I, 
modulus of elasticity E, density ρ, and Poisson’s ratio σ. Rewrite this relation in dimensionless 
form. What further reduction can we make if E and I can occur only in the product form EI? 
 
Solution: Establish the variables and their dimensions: 

  T  = fcn( L , I ,   E   ,    ρ  ,  σ  ) 

{T}    {L}  {L4}   {M/LT2}  {M/L3}  {none} 

Then n = 6 and j = 3, hence we expect n − j = 6 − 3 = 3 Pi groups, capable of various 
arrangements and selected by myself as follows: [Note that σ  must be a Pi group.] 

Typical final result: T
L

E
ρ
= fcn L

4

I
,σ









 Ans.  

If E and I can only appear together as EI, then T
L3

EI
ρ

= fcn(σ ) Ans.  
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5.31 In studying sand transport by ocean waves, A. Shields in 1936 postulated that the bottom 
shear stress τ  required to move particles depends upon gravity g, particle size d and density ρp, 
and water density ρ and viscosity µ. Rewrite this in terms of dimensionless groups (which led to 
the Shields Diagram in 1936). 

Solution: There are six variables (τ, g, d, ρp, ρ, µ) and three dimensions (M, L, T), hence we 
expect n − j = 6 − 3 = 3 Pi groups. The author used (ρ, g, d) as repeating variables: 

τ
ρgd

= fcn ρg1/2d 3/2

µ
,
ρp
ρ









 Ans.  

The shear parameter used by Shields himself was based on net weight: τ /[(ρp −ρ)gd]. 

 

P5.32  In forced convection, the heat transfer coefficient h is a function of thermal 
conductivity k, density ρ, viscosity µ, specific heat cp, body length L, and velocity V.  Heat 
transfer coefficient has units of W/(m2-K) and dimensions {MT-3Θ-1}.  Rewrite this relation in 
dimensionless form, using (k, ρ, cp, L) as repeating variables. 
 
Solution:   From Table 5.1, plus the given definition of h, list the dimensions: 

  

h k ρ µ cp L V

{MT −3Θ−1} {MLT −3Θ−1} {ML−3} {ML−1T −1} {L2T −2Θ−1} {L} {LT −1}
 

Four dimensions, 3 pi groups expected.   
 
Add one variable successively to our repeating variables (k, ρ, cp, L): 

  

Π1 = k a ρb cp
c Ld h1 yields Π1 =

h L
k

Π2 = k a ρb cp
c Ld µ1 yields Π2 =

µ cp

k

Π3 = k a ρb cp
c Ld V 1 yields Π3 =

ρ Lcp V
k

 

The final desired dimensionless function is 

                              
  
h L
k

= fcn(
µ cp

k
,
ρ Lcp V

k
) Ans.  

In words, the Nusselt number is a function of Prandtl number and Peclet number. 

 

 
 
 



16  

5.33 Convection heat-transfer data are often reported as a heat-transfer coefficient h, defined by 

  
Q = h AΔT  

where   = heat flow, J/s 
   A = surface area, m2 

ΔT = temperature difference, K 
 
The dimensionless form of h, called the Stanton number, is a combination of h, fluid density ρ, 

specific heat cp, and flow velocity V. Derive the Stanton number if it is proportional to h.  What 
are the units of  h? 

Solution:  
 

If { Q} = {hAΔT}, then ML2

T3








= {h}{L2}{Θ}, or: {h} = M

ΘT3{ }   

Then {Stanton No.} = {h1ρbcp
cVd} = M

ΘT3{ } M
L3{ }

b L2

T2Θ









c
L
T{ }

d

= M0L0T0Θ0  

Solve for b = −1,  c = −1,  and d = −1.  

Thus, finally, Stanton Number = hρ−1cp
−1V−1 =

h
ρVcp

Ans.  

 

5.34 In Example 5.1 we used the pi theorem to develop Eq. (5.2) from Eq. (5.1). Instead of 
merely listing the primary dimensions of each variable, some workers list the powers of each 
primary dimension for each variable in an array: 

       
F L U ρ µ

M
L
T

1 0 0 1 1
1 1 1 −3 −1

−2 0 −1 0 −1

















 

This array of exponents is called the dimensional matrix for the given function. Show that the 
rank of this matrix (the size of the largest nonzero determinant) is equal to j = n – k, the desired 
reduction between original variables and the pi groups. This is a general property of dimensional 
matrices, as noted by Buckingham [1]. 
 
Solution: The rank of a matrix is the size of the largest submatrix within which has a non-zero 
determinant. This means that the constants in that submatrix, when considered as coefficients of 
algebraic equations, are linearly independent. Thus we establish the number of independent 
parameters—adding one more forms a dimensionless group. For the example shown, the rank is 
three (note the very first 3 × 3 determinant on the left has a non-zero determinant). Thus “j” = 3 
for the drag force system of variables. 
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5.35 The lift force F on a missile is a function of its length L, velocity V, diameter D, angle of 
attack α, density ρ, viscosity µ, and speed of sound a of the air. Write out the dimensional matrix 
of this function and determine its rank. (See Prob. 5.34 for an explanation of this concept.) 
Rewrite the function in terms of pi groups. 
 
Solution: Establish the variables and their dimensions: 
 

      F    = fcn(   L  ,    V ,   D  ,   α  ,    ρ  ,   µ  ,  a  ) 

{ML/T2}     {L}  {L/T}  {L}   {1}   {M/L3}  {M/LT} {L/T} 

Then n = 8 and j = 3, hence we expect n − j = 8 − 3 = 5 Pi groups. The matrix is 

 
   F        L        V        D        α         ρ        µ        a  

  M:        1        0         0         0         0         1        1         0 
  L:         1        1         1         1         0        -3       -1        1 

  T:         -2       0        -1        0         0         0        -1       -1 
 

The rank of this matrix is indeed three, hence there are exactly 5 Pi groups.  The writer chooses: 

Typical final result: F
ρV2L2

= fcn α , ρVL
µ
, L
D
, V
a







Ans.  

 

5.36 The angular velocity Ω of a windmill is a function of windmill diameter D, wind velocity 
V, air density ρ, windmill height H as compared to atmospheric boundary layer height L, and the 
number of blades N:  that is,  Ω = fcn(D, V, ρ, H/L, N). Viscosity effects are negligible. Rewrite 
this function in terms of dimensionless Pi groups. 

  Ω = fcn( D, V , ρ, H / L , N )  

Solution: We have n = 6 variables, j = 3 dimensions (M, L, T), thus expect n − j = 3 Pi groups. 
Since only ρ has mass dimensions, it drops out. After some thought, we realize that H/L and N 
are already dimensionless! The desired dimensionless function becomes: 

ΩD
V

= fcn H
L
,N






 Ans.  

 

5.37 A simply supported beam of diameter D, length L, and modulus of elasticity E is subjected 
to a fluid crossflow of velocity V, density ρ, and viscosity µ. Its center deflection δ is assumed to 
be a function of all these variables. (a) Rewrite this proposed function in dimensionless form. (b) 
Suppose it is known that δ is independent of µ, inversely proportional to E, and dependent only upon 
ρV 

2, not ρ and V separately. Simplify the dimensionless function accordingly. 
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Solution: Establish the variables and their dimensions: 

  δ = fcn(   ρ  ,   D  ,   L   ,    E    ,  V ,    µ    ) 

{L}     {M/L3}  {L}   {L}  {M/LT2}   {L/T}   {M/LT} 

Then n = 7 and j = 3, hence we expect n − j = 7 − 3 = 4 Pi groups, capable of various 
arrangements and selected by the writer, as follows (a): 

Well-posed final result: δ
L
= fcn L

D
, ρVD

µ
, E
ρV2







Ans. (a)  

(b) If µ is unimportant and δ proportional to E-1, then the Reynolds number (ρVD/µ) drops out, 
and we have already cleverly combined E with ρV2, which we can now slip out and turn upside 
down: 

If µ drops out and δ ∝
1
E

, then δ
L
=
ρV2

E
fcn L

D






,

or: δE
ρV2L

= fcn L
D







Ans. (b)
 

 

5.38 The heat-transfer rate per unit area q to a body from a fluid in natural or gravitational 
convection is a function of the temperature difference ΔT, gravity g, body length L, and three 
fluid properties: kinematic viscosity ν, conductivity k, and thermal expansion coefficient β. 
Rewrite in dimensionless form if it is known that g and β appear only as the product gβ. 
 
Solution: Establish the variables and their dimensions: 

  q   = fcn(  ΔT ,   g  ,   L  , ν   ,  β ,   k     ) 

{M/T3}     {Θ}   {L/T2}  {L}  {L2/T}  {1/Θ}   {ML/ΘT3} 

Then n = 7 and j = 4, hence we expect n − j = 7 − 4 = 3 Pi groups, capable of various 
arrangements and selected by myself, as follows: 

If β and ΔT kept separate, then qL
kΔT

= fcn βΔT, gL3

ν 2









  

If, in fact, β and g must appear together, then Π2 and Π3 above combine and we get 

   

qL
kΔT

= fcn βΔTgL3

v2









 Ans.

Nusselt No. Grashof Number
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5.39 A weir is an obstruction in a channel flow which can be calibrated to measure the flow 
rate, as in Fig. P5.39. The volume flow Q varies with gravity g, weir width b into the paper, and 
upstream water height H above the weir crest. If it is known that Q is proportional to b, use the pi 
theorem to find a unique functional relationship Q(g, b, H).  

 

Fig. P5.39 

Solution: Establish the variables and their dimensions: 

  Q  = fcn(   g ,  b  ,  H ) 

{L3/T}   {L/T2}  {L}   {L} 

Then n = 4 and j = 2, hence we expect n − j = 4 − 2 = 2 Pi groups, capable of various 
arrangements and selected by myself, as follows: 

Q
g1/2H5/2 = fcn b

H






; but if Q ∝ b, then we reduce to Q
bg1/2H3/2

= constant Ans.  

 

5.40 A spar buoy (see Prob. 2.126) has a period T of vertical (heave) oscillation which depends 
upon the waterline cross-sectional area A, buoy mass m, and fluid specific weight γ. How does 
the period change due to doubling of (a) the mass and (b) the area? Instrument buoys should have 
long periods to avoid wave resonance. Sketch a possible long-period buoy design. 

 
Fig. P5.40 

Solution: Establish the variables and their dimensions: 

T   =  fcn(  A  ,   m  ,         γ   ) 

{T}    {L2}  {M}  {M/L2T2} 
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Then n = 4 and j = 3, hence we expect n − j = 4 − 3 = 1 single Pi group, as follows: 

T Aγ
m

= dimensionless constant Ans.  

Since we can’t do anything about γ, the specific weight of water, we can increase period T by 
increasing buoy mass m and decreasing waterline area A. See the illustrative long-period buoy in 
Figure P5.40 above. 

 

5.41 To good approximation, the thermal conductivity k of a gas (see Ref. 21 of Chap. 1) 
depends only on the density ρ, mean free path  gas constant R, and absolute temperature T. For 
air at 20°C and 1 atm, k ≈ 0.026 W/m⋅K and ≈ 6.5E−8 m. Use this information to determine k 
for hydrogen at 20°C and 1 atm if  ≈ 1.2E−7 m. 
 
Solution: First establish the variables and their dimensions and then form a pi group: 

  k   = fcn(   ρ  ,     ,  R   ,  T ) 

{ML/ΘT3}     {M/L3}   {L}  {L2/T2Θ}   {Θ} 

Thus n = 5 and j = 4, and we expect n − j = 5 − 4 = 1 single pi group, and the result is 

 
k/(ρR3/2T 1/2

) = a dimensionless constant = Π1  

The value of Π1 is found from the air data, where ρ = 1.205 kg/m3 and R = 287 m2/s2⋅K: 

  
Π1,air =

0.026
(1.205)(287)3/2(293)1/2(6.5E−8)

= 3.99 = Π1,hydrogen  

For hydrogen at 20°C and 1 atm, calculate ρ = 0.0839 kg/m3 with R = 4124 m2/s2⋅K. Then 

Π1 = 3.99 =
khydrogen

(0.0839)(4124)3/2 (293)1/2 (1.2E−7)
, solve for khydrogen = 0.182 W

m⋅K
Ans.  

This is slightly larger than the accepted value for hydrogen of k ≈ 0.178 W/m⋅K. 

 

5.42 The torque M required to turn the cone-
plate viscometer in Fig. P5.42 depends upon the 
radius R, rotation rate Ω, fluid viscosity µ, and 
cone angle θ. Rewrite this relation in 
dimensionless form. How does the relation 
simplify if it is known that M is proportional to 
θ?  

Fig. P5.42 
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Solution: Establish the variables and their dimensions: 

    M   = fcn(   R  , Ω   ,   µ   ,  θ    ) 

{ML2/T2}    {L}  {1/T}  {M/LT}  {1} 

Then n = 5 and j = 3, hence we expect n − j = 5 − 3 = 2 Pi groups, capable of only one reasonable 
arrangement, as follows: 

M
µΩR3

= fcn(θ ); if M∝θ, then M
µΩθR3

= constant Ans. 

See Prob. 1.61 of this Manual, for an analytical solution. 
 

P5.43 A hard-disk cleaning process requires a simple tool as shown in Fig. 5.43. 
 

 
Fig. P5.43 

Clean air is forced into the box at point ➀ and ➁ and allowed to flow out at point ➂ with Q L/s 
flow rate. During the cleaning process, the disk must be spinned at the spinning rate ω  rad/s. A 
manufacturer wants to reduce the process time. If we want to apply dimensional analysis, what 
relationship in dimensionless form should it be? 

Solution: Let cleaning time be T. A possible relationship of the process could be 

T = f ρ,µ,Q,ω,h,Lω,L( )  

step 1 Count the variables, η = 8  

step 2 Use the MLTΘ{ } system to write out the dimensions of the variables: 

 

step 3 Using ρ,  µ,  and Q as repeating variables, but we need to check whether ρ,  µ,  and Q do 
not form a pi-group. We found that (ρ,  µ,  Q) can be used as repeating variables. 
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Therefore, j = 3. 

step  4(a).  Combine (ρ,  µ,  Q ) with time to clean the disk T to find the first pi group: 

π1 = ρ
aµbQcT = ML−3{ }a ML−1T−1{ }b L3T−1{ }c T =MoLoT  

Solve the above equation, we have 

π1 =
Tµ3

ρ3Q2  

 (b)  Combine (ρ,  µ,  Q ) with spinning rate ω  to find the second pi group: 

π2 = ρ
aµbQcω = ML−3{ }

a
ML−1T−1{ }

b
L3T−1{ }

c
T−1 =MoLoTo  

Solve the above equation, we have 

π2 =
ωρ 3Q2

µ3
 

 (c)  Combine (ρ,  µ,  Q ) with height h to find the next pi group: 

π 3 = ρ
aµbQch = ML−3{ }a ML−1T−1{ }b L3T−1{ }c L =MoLoTo  

Solve the above equation, we have 

π 3 =
hµ
ρQ

 

(d)  Since Lw and L have the same dimension as h, therefore, we can easily write out π4    
and π5 as follow: 

π 4 =
Lwµ
ρQ

 and π 5 =
Lµ
ρQ

 

step 5 π1 = g π 2 .....,  π 5( )  

Tµ3

ρ3Q2 = g
ωρ3Q2

µ3 ,  hµ
ρQ

,  Lωµ
ρQ

,  Lµ
ρQ







 

This is an example of how we would proceed for our experiment. 
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P5.44  Consider natural convection in a rotating, fluid-filled enclosure.  The average 
wall shear stress τ in the enclosure is assumed to be a function of rotation rate Ω, enclosure 
height H, density ρ, temperature difference ΔT, viscosity µ, and thermal expansion coefficient 
β.  (a) Rewrite this relationship as a dimensionless function.  (b) Do you see a severe flaw in 
the analysis? 

Solution:  (a) Using Table 5.1, write out the dimensions of the seven variables: 

  

τ ρ H Ω µ β ΔT

{ML-1T-2} {ML-3} {L} {T-1} {ML-1T-1} {Θ-1} {Θ}
 

There are four primary dimensions (MLTQ), and we can easily find four variables (ρ, H, Ω, 
β) that do not form a pi group.  Therefore we expect 7-4 = 3 dimensionless groups.  Adding 
each remaining variable in turn, we find three nice pi groups: 

  

Π1 = ρa H bΩc βd τ leads to Π1 =
τ

ρH 2Ω2

Π2 = ρa H bΩc βd µ leads to Π2 =
µ

ρH 2Ω

Π3 = ρa H bΩc βd ΔT leads to Π3 = β ΔT

 

Thus one very nice arrangement of the desired dimensionless function is 

  

τ

ρH 2Ω2
= fcn( µ

ρH 2Ω
, β ΔT ) Ans.(a)  

(b) This is a good dimensional analysis exercise, but in real life it would fail miserably, 
because natural convection is highly dependent upon the acceleration of gravity, g, which we 
left out by mistake. 

 

5.45 A pendulum has an oscillation period T which is assumed to depend upon its length L, 
bob mass m, angle of swing θ, and the acceleration of gravity. A pendulum 1 m long, with a bob 
mass of 200 g, is tested on earth and found to have a period of 2.04 s when swinging at 20°. (a) 
What is its period when it swings at 45°? A similarly constructed pendulum, with L = 30 cm 
and m = 100 g, is to swing on the moon (g = 1.62 m/s2) at θ = 20°. (b) What will be its 
period? 
 
Solution: First establish the variables and their dimensions so that we can do the numbers: 

  T   = fcn(   L   ,  m   ,   g  ,  θ   ) 

{T}   {L}   {M}   {L/T2} {1} 
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Then n = 5 and j = 3, hence we expect n − j = 5 − 3 = 2 Pi groups. They are unique: 

T g
L
= fcn(θ) (mass drops out for dimensional reasons)  

(a) If we change the angle to 45°, this changes Π2, hence we lose dynamic similarity and do not 
know the new period. More testing is required. Ans. (a) 
(b) If we swing the pendulum on the moon at the same 20°, we may use similarity: 

T1
g1

L1








1/2

= (2.04 s) 9.81 m/s2

1.0 m







1/2

= 6.39 = T2
1.62 m/s2

0.3 m







1/2

,

or: T2 = 2.75 s Ans. (b)

 

 

5.46 The differential energy equation for incompressible two-dimensional flow through a 
“Darcy-type” porous medium is approximately 

ρcp
σ
µ
∂ p
∂x

∂T
∂x

+ ρcp
σ
µ
∂ p
∂y

∂T
∂y

+ k ∂
2T
∂y2

= 0  

where σ is the permeability of the porous medium. All other symbols have their usual meanings. 
(a) What are the appropriate dimensions for σ ? (b) Nondimensionalize this equation, using (L, 
U, ρ, To) as scaling constants, and discuss any dimensionless parameters which arise. 
 
Solution: (a) The only way to establish {σ} is by comparing two terms in the PDE: 

 

ρcp
σ
µ
∂p
∂x

∂T
∂x








= k ∂

2T
∂x2









, or: M
L3T3{ }{σ} ?

=  M
LT3{ },

Thus {σ} = {L2} Ans. (a)

 

(b) Define dimensionless variables using the stated list of (L, U, ρ, To) for scaling: 

x* = x
L
; y* = y

L
; p* = p

ρU2
; T* = T

To
 

Substitution into the basic PDE above yields only a single dimensionless parameter: 

ζ
∂p*
∂x*

∂T*
∂x*

+
∂p*
∂y*

∂T*
∂y*






+
∂ 2T*
∂y*2 = 0, where ζ =

ρ2cpU
2σ

µk
Ans. (b)  

I don’t know the name of this parameter. It is related to the “Darcy-Rayleigh” number. 
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5.47 A model differential equation, for chemical reaction dynamics in a plug reactor, is  
as follows: 

 
u ∂C
∂x

= D
∂ 2C
∂x2

− kC −
∂C
∂t

 

where u is the velocity, D is a diffusion coefficient, k is a reaction rate, x is distance along the 
reactor, and C is the (dimensionless) concentration of a given chemical in the reactor. (a) 
Determine the appropriate dimensions of D and k. (b) Using a characteristic length scale L and 
average velocity V as parameters, rewrite this equation in dimensionless form and comment on 
any Pi groups appearing. 

 
Solution: (a) Since all terms in the equation contain C, we establish the dimensions of k and D 
by comparing {k} and {D∂ 2/∂x2} to {u∂ /∂x}: 

  

{k} = {D} ∂ 2

∂x2







= {D} 1

L2{ } = {u} ∂
∂x{ } = L

T{ } 1
L{ },

hence {k} = 1
T{ } and {D} = L2

T








Ans. (a)
 

(b) To non-dimensionalize the equation, define u* = u/V ,  t* =Vt/L,  and x* = x/L  and substitute 
into the basic partial differential equation. The dimensionless result is 

  
u* ∂C

∂x*
=

D
VL





∂ 2C
∂x*2

−
kL
V






C−∂C

∂ t*
, where VL

D
=mass-transfer Peclet number Ans. (b)  

 

5.48 The differential equation for small-amplitude vibrations y(x, t) of a simple beam is given 
by 

 
where ρ = beam material density 

A = cross-sectional area 
I = area moment of inertia 
E = Young’s modulus 

 
Use only the quantities ρ, E, and A to nondimensionalize y, x, and t, and rewrite the differential 
equation in dimensionless form. Do any parameters remain? Could they be removed by further 
manipulation of the variables? 
 
Solution: The appropriate dimensionless variables are 

y* = y
A
; t* = t E

ρA
; x* = x

A
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Substitution into the PDE above yields a dimensionless equation with one parameter: 

∂ 2y*
∂t*2

+
I
A2






∂ 4y*
∂x *4

= 0; One geometric parameter: I
A2

Ans.  

We could remove (I/A2) completely by redefiningx* = x/I1/4 . Ans. 

 

5.49 Non-dimensionalize the thermal energy partial differential equation (4.75) and its 
boundary conditions (4.62), (4.63), and (4.70) by defining dimensionless temperature T* = T/To , 
where To is the fluid inlet temperature, assumed constant. Use other dimensionless variables as 
needed from Eqs. (5.23). Isolate all dimensionless parameters which you find, and relate them to 
the list given in Table 5.2. 
 

Solution: Recall the previously defined variables in addition to : 

u* = u
U

; x* = x
L

; t* = Ut
L

; similarly, v* or w* = v or w
U

; y* or z* = y or z
L

 

Then the dimensionless versions of Eqs. (4.75, 62, 63, 70) result as follows: 

(4.75): dT*
dt*

=
k

ρcpUL











1/Peclet Number

∇*2T*+ µU
ρcpToL









Φ*

Eckert Number divided by Reynolds Number

 

 

P5.50  If a vertical wall at temperature Tw is surrounded by a fluid at temperature To, a 
natural convection boundary layer flow will form.  For laminar flow, the momentum equation 
is 

                    
  
ρ(u ∂u

∂x
+v ∂u

∂y
) = ρβ(T −To )g + µ

∂2u
∂y2

 

to be solved, along with continuity and energy, for (u, v, T) with appropriate boundary 
conditions.  The quantity β is the thermal expansion coefficient of the fluid.  Use ρ, g, L, and 
(Tw – To) to nondimensionalize this equation.  Note that there is no “stream” velocity in this 
type of flow. 

Solution:  For the given constants used to define dimensionless variables, there is only one 
pairing which will give a velocity unit: (gL)1/2.   Here are the writer’s dimensionless variables: 

  
u * = u

gL
; v * = v

gL
; x * =

x
L

; y * = y
L

; T * =
T −To
Tw −To
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Substitute into the momentum equation above and clean up so all terms are dimensionless: 

             

  

ρ(u *∂u *
∂x *

gL
L

) + ρ(v *∂u *
∂y *

gL
L

) = ρβg(Tw −To )T * + µ
∂2u *
∂y * 2

gL
L2

or : u *∂u *
∂x *

+ v *∂u *
∂y *

= [β(Tw −To )]T * + [ µ

ρL gL
] ∂

2u *
∂y * 2

Ans.
 

There are two dimensionless parameters:   β(Tw −To )  and   µ /[ ρL gL ].  Neither has a name, 

to the writer’s knowledge, because a much cleverer analysis would result in only a single 
dimensionless parameter, the Grashof number, g  β(Tw −To ) L3/ν2.   (See, for example, White, 

Viscous Fluid Flow, 3rd edition, Section 4-14.3, page 323.) 
 

5.51 A smooth steel (SG = 7.86) sphere is immersed in a stream of ethanol at 20°C moving at 
1.5 m/s. Estimate its drag in N from Fig. 5.3a. What stream velocity would quadruple its drag? 
Take D = 2.5 cm. 

Solution: For ethanol at 20°C, take ρ ≈ 789 kg/m3 and µ ≈ 0.0012 kg/m⋅s. Then 

ReD =
ρUD
µ

=
789(1.5)(0.025)

0.0012
≈ 24700; Read Fig. 5.3(a): CD,sphere ≈ 0.4  

Compute drag F = CD
1
2






ρU2 π

4
D2 = (0.4) 1

2






(789)(1.5)2 π
4







(0.025)2

≈ 0.17 N Ans.
 

Since CD ≈ constant in this range of ReD, doubling U quadruples the drag. Ans. 
 

5.52 The sphere in Prob. 5.51 is dropped in gasoline at 20°C. Ignoring its acceleration phase, 
what will be its terminal (constant) fall velocity, from Fig. 5.3a? 

Solution: For gasoline at 20°C, take ρ ≈ 680 kg/m3 and µ ≈ 2.92E−4 kg/m⋅s. For steel take 
ρ ≈ 7800 kg/m3. Then, in “terminal” velocity, the net weight equals the drag force: 

 
Net weight = (ρsteel − ρgasoline )g π

6
D3 =  Drag force = CD

ρ
2

V2 π
4

D2,  

or: (7800 − 680)(9.81)π
6

(0.025)3 = 0.571 N = CD
1
2







(680)U2 π
4

(0.025)2  

 
Guess CD ≈ 0.4 and compute U ≈ 2.9 m

s
Ans.  

Now check ReD = ρUD/µ = 680(2.9)(0.025)/(2.92E−4) ≈ 170000. Yes, CD ≈ 0.4, OK. 
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P5.53  The parachute in the chapter-opener photo is, of course, meant to decelerate the 
payload on Mars.  The wind tunnel test gave a drag coefficient of about 1.1, based upon the 
projected area of the parachute.  Suppose it was falling on earth and, at an altitude of 1000 m, 
showed a steady descent rate of about 30 km/h.  Estimate the weight of the payload. 

Solution:  Let’s convert everything to metric.  The diameter is 55 ft = 16.8 m.  Standard air 
density at 1000 m is 1.112 kg/m3.  Descent velocity is 8.33 m/s.  Then 

  

CD = 1.1 =
F

(1/2)ρV 2(π /4)D2
=

F
(1/2)(1.112 kg/m3)(8.33 m/s)2(π /4)(16.8 m)2

Solve for F = 9407.3 N (on earth) Ans.
 

 

5.54 A ship is towing a sonar array which approximates a submerged cylinder 0.3 m in 
diameter and 9 m long with its axis normal to the direction of tow. If the tow speed is
 12 kn (1 kn ≈ 0.51 m/s),  estimate the horsepower required to tow this cylinder. What will be the 
frequency of vortices shed from the cylinder? Use Figs. 5.2 and 5.3. 

Solution: For seawater at 20°C, take ρ ≈ 1023 kg/m3 and µ =1.08 ×10−3N ⋅ s/m2. Convert V 
= 12 knots ≈ 6.12 m/s. Then the Reynolds number and drag of the towed cylinder is 

   

ReD =
ρUD
µ

=
1023(6.12)(0.3)

1.08×10−3
≈ 1.74E6. Fig. 5.3(a) cylinder: Read CD ≈ 0.3

Then F = CD
1
2







ρU2DL = 0.3( ) 1

2







 1023( ) 6.12( )2 0.3( ) 9( ) ≈ 15517.92 N

Power P = FU = 15517.92( ) 6.12( ) ≈ 127.4 hp Ans. (a)

 

Data for cylinder vortex shedding is found from Fig. 5.2b. At a Reynolds number  
ReD ≈ 1.74E6, read fD/U ≈ 0.24. Then 

 
fshedding =

StU
D

=
0.24( ) 6.12( )

0.3
≈  5 Hz Ans. (b)  

 

5.55 A fishnet is made of 1-mm-diameter strings knotted into 2 × 2 cm squares. Estimate the 
horsepower required to tow 28 m2 of this netting at 3 kn in seawater at 20°C. The net plane is 
normal to the flow direction. 

Solution: For seawater at 20°C, take ρ ≈ 1023 kg/m3 and µ ≈ 0.00108 kg/m·s. Convert V = 
3 knots = 1.54 m/s. Then, considering the strings as “cylinders in crossflow,” the Reynolds 
number is Re 

ReD =
ρVD
µ

=
(1023)(1.54)(0.001)

0.00108
≈ 1460; Fig. 5.3(a): CD,cyl ≈ 1.0  
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Drag of one 2-cm strand: 

F = CD
ρ
2

V2DL = (1.0) 1023
2







(1.54)2(0.001)(0.02) ≈ 0.0243 N  

Now 1 m2 of net contains 5000 of these 2-cm strands, and 28 m2 of net contains (5000)(28) = 
140,000 strands total, for a total net force F = 140,000(0.0243) ≈ 3400 N on the net. Then the 
horsepower required to tow the net is 

   Power = FV = (3400)(1.54) = 5236 W ÷ 746 W/hp ≈ 7.0 hp Ans. 
 

5.56 The simply supported 1040 carbon-steel rod of Fig. P5.56 is subjected to a crossflow 
stream of air at 20°C and 1 atm. For what stream velocity U will the rod center deflection be 
approximately 1 cm? 

Solution: For air at 20°C, take ρ ≈ 1.2 kg/m3 and µ ≈ 1.8E−5 kg/m·s. For carbon steel take 
Young’s modulus E ≈ 29E6 psi ≈ 2.0E11 Pa. 

 
Fig. P5.56 

 
This is not an elasticity course, so just use the formula for center deflection of a simply-
supported beam: 

δcenter =
FL3

48EI
= 0.01 m =

F(0.6)3

48(2.0E11)[(π/4)(0.005)4 ]
, solve for F ≈ 218 N

Guess CD ≈ 1.2, then F = 218 N = CD
ρ
2

V2DL = (1.2) 1.2
2







V2(0.01)(0.6) 

 

Solve for V ≈ 225 m/s, check ReD = ρ VD/µ ≈ 150,000: OK, CD ≈ 1.2 from Fig. 5.3a. 
Then V ≈ 225 m/s, which is quite high subsonic speed, Mach number ≈ 0.66. Ans. 

 

5.57 For the steel rod of Prob. 5.56, at what airstream velocity U will the rod begin to vibrate 
laterally in resonance in its first mode (a half sine wave)? (Hint: Consult a vibration text [Ref. 34 
or 35] under “lateral beam vibration.”) 

Solution: From a vibrations book, the first mode frequency for a simply-supported slender 
beam is given by 

ωn = π
2 EI

mL4 where m = ρsteelπR2 = beam mass per unit length  

Thus fn =
ωn

2π
=
π
2

2.0E11(π/4)(0.005)4

(7840)π(0.005)2 (0.6)4











1/2

≈ 55.1 Hz  

 



30  

The beam will resonate if its vortex shedding frequency is the same. Guess fD/U ≈ 0.2: 

St = fD
U

≈ 0.2 = 55.1(0.01)
U

, or U ≈ 2.8 m
s

 

 
Check ReD = ρVD/µ ≈ 1800. Fig. 5.2, OK, St ≈ 0.2. Then V ≈ 2.8 m

s
Ans.  

 

5.58 When fluid in a long pipe starts up from rest at a uniform acceleration a, the initial flow 
is laminar.  The flow undergoes transition to turbulence at a time t* which depends, to first 
approximation, only upon a, ρ, and µ.   Experiments by P. J. Lefebvre, on water at 20°C 
starting from rest with 1-g acceleration in a 3-cm-diameter pipe, showed transition at t* = 1.02 
s.  Use this data to estimate (a) the transition time, and (b) the transition Reynolds number ReD 
for water flow accelerating at 35 m/s2 in a 5-cm-diameter pipe. 

Solution:  For water at 20°C, take ρ = 998 kg/m3 and m = 0.001 kg/m-s.  There are four 
variables. Write out their dimensions: 

  

t * a ρ µ

{T} {LT −2} {ML−3} {ML−1T −1}
 

There are three primary dimensions, (MLT), hence we expect 4 – 3 = one pi group: 

  
Π1 = ρa µb ac t *1 yields Π1 = t *(ρ a2

µ
)1/3 , or t * = (const)( µ

ρ a2
)1/3  

Use LeFebvre’s data point to establish the constant value of Π1: 

  
t * = 1.02 = (const)[ 0.001kg / m− s

(998kg / m3)(9.81m / s2 )2
]1/3 = (const)(0.00218)  

Thus the constant, or Π1, equals 1.02/0.00218   =   467  (dimensionless).  Use this value to 
establish the new transition time for a = 35 m/s2 in a 5-cm-diameter pipe: 

   

t * = (467)( µ

ρ a2
)1/3 = (467)[ 0.001

998(35)2
]1/3 = 0.44s Ans.(a)

ReD =
ρVD
µ

=
ρ(aT*)D

µ
=

998[35(0.44)](0.05)
(0.001)

= 768,000 Ans.(b)
 

This transition Reynolds number is more than 300 times the value for which steady laminar 
pipe flow undergoes transition.  The reason is that this is a thin-boundary-layer flow, and the 
laminar velocity profile never even approaches the Poiseuille parabola. 
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5.59 Vortex shedding can be used to design a vortex flowmeter (Fig. 6.34). A blunt rod 
stretched across the pipe sheds vortices whose frequency is read by the sensor downstream. 
Suppose the pipe diameter is 5 cm and the rod is a cylinder of diameter 8 mm. If the sensor reads 
5400 counts per minute, estimate the volume flow rate of water in m3/h. How might the meter 
react to other liquids? 

Solution: 5400 counts/min = 90 Hz = f. 

 

Fig. 6.34 

Guess fD
U

≈ 0.2 = 90(0.008)
U

, or U ≈ 3.6 m
s

 

Check ReD,water =
998(3.6)(0.008)

0.001
≈ 29000; Fig. 5.2: Read St ≈ 0.2, OK.  

If the centerline velocity is 3.6 m/s and the flow is turbulent, then Vavg ≈ 0.82Vcenter (see  
Ex. 3.4 of the text). Then the pipe volume flow is approximately: 

  
Q =  VavgApipe = (0.82 × 3.6) π

4
(0.05 m)2 ≈ 0.0058 m3

s
≈ 21 m3

hr
Ans. 

 

5.60 The radio antenna on a car begins to vibrate wildly at 8 Hz when the car is driven at 72 
km/h over a rutted road which approximates a sine wave of amplitude 2 cm and wavelength λ = 
2.5 m. The antenna diameter is 4 mm. Is the vibration due to the road or to vortex shedding? 
 
Solution: Convert U = 72 km/h = 20 m/s. Assume sea level air, ρ = 1.2 kg/m3,  µ = 1.8E−5 
kg/m⋅s. Check the Reynolds number based on antenna diameter: Red = (1.2)(20)(0.004)/(1.8E−5) 
= 5333.3. From Fig. 5.2b, read St ≈ 0.21 = (ω/2π)d/U = (fshed)(0.004 m)/(20 m/s), or fshed ≈ 
1050 Hz ≠ 8 Hz, so rule out vortex shedding. Meanwhile, the rutted road introduces a forcing 
frequency froad = U/λ = (20 m/s)/(2.5 m) = 8 Hz. We conclude that this resonance is due to road 
roughness. 
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5.61 Flow past a long cylinder of square cross-section results in more drag than the comparable 
round cylinder. Here are data taken in a water tunnel for a square cylinder of side length b = 2 
cm: 

V, m/s: 1.0 2.0 3.0 4.0 
Drag, N/(m of depth): 21 85 191 335 

(a) Use this data to predict the drag force per unit depth of wind blowing at 6 m/s, in air at 20°C, 
over a tall square chimney of side length b = 55 cm. (b) Is there any uncertainty in your estimate? 

Solution: Convert the data to the dimensionless form F/(ρV2bL) = fcn(ρVb/µ), like  
Eq. (5.2). For air, take ρ = 1.2 kg/m3 and µ = 1.8E−5 kg/m⋅s. For water, take ρ = 998 kg/m3 and µ 
= 0.001 kg/m⋅s. Make a new table using the water data, with L = 1 m: 
 

F/(ρV2bL): 1.05 1.06 1.06 1.05 
ρVb/µ: 19960 39920 59880 79840 

 
In this Reynolds number range, the force coefficient is approximately constant at about 1.055. 
Use this value to estimate the air drag on the large chimney: 

 
Fair = CFρairVair

2 (bL)chimney = (1.055) 1.2 kg
m3







 6 m

s








2

(0.55 m)(1m) ≈ 25 N / m Ans. (a)  

(b) Yes, there is uncertainty, because Rechimney = 220,000 > Remodel = 80,000 or less. 
 

P5.62     A long, slender, 3-cm-diameter smooth flagpole bends alarmingly in 32 km/h sea-
level  winds, causing patriotic citizens to gasp.  An engineer claims that the pole will bend 
less  if its surface is deliberately roughened.   Is she correct, at least qualitatively? 

Solution:  For sea-level air, take ρ = 1.2255 kg/m3 and µ = 1.78E-5 kg/m-s.  Convert 32 km/h 
= 8.89 m/s.  Calculate the Reynolds number of the pole as a “cylinder in crossflow”: 

ReD =
ρVD
µ

=
(1.2255 kg/m3)(8.89 m/s)(0.03 m)

1.78E − 5kg/m − s
= 18360

 
From Fig. 5.3b, we see that this Reynolds number is below the region where roughness is 
effective in reducing cylinder drag.  Therefore we think the engineer is incorrect.      Ans. 

[It is more likely that the drag of the flag is causing the problem.] 
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*P5.63    The thrust F of a free propeller, either aircraft or marine, depends upon density ρ, 
the rotation rate n in r/s, the diameter D, and the forward velocity V.  Viscous effects are slight 
and neglected here.  Tests of a 25-cm-diameter model aircraft propeller, in a sea-level wind 
tunnel, yield the following thrust data at a velocity of 20 m/s:            

Rotation rate, r/min 4800 6000 8000 

Measured thrust, N 6.1 19 47 

 
(a) Use this data to make a crude but effective dimensionless plot.  (b) Use the dimensionless 
data to predict the thrust, in newtons, of a similar 1.6-m-diameter prototype propeller when 
rotating at 3800 r/min and flying at 360 km/h at 4000 m standard altitude. 
Solution:  The given function is   F  =  fcn(r, n, D, V), and we note that j = 3.  Hence we 
expect 2 pi groups.  The writer chose (r, n, D) as repeating variables and found this: 

CF = fcn( J ) , where CF =
F

ρ n2 D4 and J =
V
nD  

The quantity CF is called the thrust coefficient, while J is called the advance ratio.  Now use 
the data (at r = 1.2255 kg/m3) to fill out a new table showing the two pi groups: 

n, r/s 133.3 100.0 80.0 

CF 0.55 0.40 0.20 

J 0.60 0.80 1.00 

A crude but effective plot of this data is as follows.     Ans.(a) 

                         

(b)   At 4000 m altitude, from Table A.6, r = 0.8191 kg/m3.  Convert 360 km/h = 100 m/s.  
Convert 3800 r/min = 63.3 r/s.   Then find the prototype advance ratio:   

J = (100 m/s)/[(63.3 r/s)(1.6 m) = 0.99 

Well, lucky us, that’s our third data point!  Therefore   CF,prototype  ≈  0.20.   And the thrust is 

Fprototype = CFρn
2D4 = (0.20)(0.8191 kg

m3 )(63.3
r
s
)2 (1.6m)4 ≈ 4300 N Ans.(b)  

 

0 
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5.64 If viscosity is neglected, typical pump-flow results are shown in Fig. P5.64 for a model 
pump tested in water. The pressure rise decreases and the power required increases with the 
dimensionless flow coefficient. Curve-fit expressions are given for the data. Suppose a similar 
pump of 12-cm diameter is built to move gasoline at 20°C and a flow rate of 25 m3/h. If the 
pump rotation speed is 30 r/s, find (a) the pressure rise and (b) the power required. 
 

 
Fig. P5.64 

Solution: For gasoline at 20°C, take ρ ≈ 680 kg/m3 and µ ≈ 2.92E−4 kg/m⋅s. Convert Q = 25 
m3/hr = 0.00694 m3/s. Then we can evaluate the “flow coefficient”: 

Q
ΩD3 =

0.00694
(30)(0.12)3 ≈ 0.134, whence Δp

ρΩ2D2 ≈ 6 −120(0.134)2 ≈ 3.85

and  P
ρΩ3D5 ≈ 0.5 + 3(0.134) ≈ 0.902

 

With the dimensionless pressure rise and dimensionless power known, we thus find 

Δp = (3.85)(680)(30)2 (0.12)2 ≈ 34000 Pa Ans. (a)  

P = (0.902)(680)(30)3(0.12)5 ≈ 410 W Ans. (b)  
 

5.65 The natural frequency ω of vibra-tion of a mass M attached to a rod, as in Fig. P5.65, 
depends only upon M and the stiffness EI and length L of the rod. Tests with a 2-kg mass 
attached to a 1040 carbon-steel rod of diameter 12 mm and length 40 cm reveal a natural 
frequency of 0.9 Hz. Use these data to predict the natural frequency of a 1-kg mass attached to a 
2024 aluminum-alloy rod of the same size. 

 
Fig. P5.65 
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Solution: For steel, E ≈ 29E6 psi ≈ 2.03E11 Pa. If ω = f(M, EI, L), then n = 4 and j = 3 (MLT), 
hence we get only 1 pi group, which we can evaluate from the steel data: 

ω (ML3)1/2

(EI)1/2
= constant = 0.9[(2.0)(0.4)3]1/2

[(2.03E11)(π/4)(0.006)4 ]1/2
≈ 0.0224  

For 2024 aluminum, E ≈ 10.6E6 psi ≈ 7.4E10 Pa. Then re-evaluate the same pi group: 

 
New ω (ML3)1/2

(EI)1/2
= 0.0224 = ω [(1.0)(0.4)3]1/2

[(7.4E10)(π / 4)(0.006)4 ]1/2
, or ω alum ≈ 0.77 Hz Ans.  

 

5.66 In turbulent flow near a flat wall, the local velocity u varies only with distance y from the 
wall, wall shear stress τw, and fluid properties ρ and µ. The following data were taken in the 
University of Rhode Island wind tunnel for airflow, ρ = 1.19 kg/m3, µ =1.8 ×10−5N ⋅ s/m2,and 
τw = 1.39 N/m2: 

 
y, cm 0.053 0.089 0.140 0.203 0.305 0.406 
u, m/s 15.42 16.52 17.56 18.20 19.35 20.09 

 
(a) Plot these data in the form of dimensionless u versus dimensionless y, and suggest a suitable 
power-law curve fit. (b) Suppose that the tunnel speed is increased until u = 27.43 m/s at y = 
0.279 cm. Estimate the new wall shear stress, in N/m2. 
 
Solution: Given that u = fcn(y, τw, ρ, µ), then n = 5 and j = 3 (MLT), so we expect  
n − j = 5 − 3 = 2 pi groups, and they are traditionally chosen as follows (Chap. 6, Section 6.5): 

u
u*

= fcn ρu*y
µ







, where u* = (τw/ρ)1/2 = the 'friction velocity '  

We may compute u *= (τw /ρ)1/2 = (1.39/1.19)1/2 = 1.08 m/s and then modify the given data into 
dimensionless parameters: 

 y, cm: 0.053 0.089 0.14 0.203 0.305 0.406 
ρu *y/µ: 38 64 100 145 218 290 

 14.3 15.3 16.3 16.9 17.9 18.6 

When plotted on log-log paper as follows, they form nearly a straight line:  
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The slope of the line is 0.13 and its intercept (at yu */ν = 1 ) is 8.9. Hence the formula: 

u/u* ≈ 8.9(yu*/ν)0.13 ± 1% Ans. (a)  

Now if the tunnel speed is increased until u = 27.43 m/s at y = 0.279 cm, we may substitute in: 

  

27.43
u*

≈ 8.9
1.19 0.279×10−2( )u*

1.8×10−5















0.13

= 8.9 184.5u *( )0.13
, solve for u* ≈ 1.49 m/s

 

Solve for τw = ρu*2 = 1.19( ) 1.49( )2 ≈ 2.63 N / m2 Ans. (b)  
 

P5.67  For the rotating-cylinder function of Prob. P5.29, if L >> D, the problem can 
be reduced to only two groups, F/(ρU2LD) versus (ΩD/U).  Here are experimental data for a 
cylinder 30 cm in diameter and 2 m long, rotating in sea-level air, with U = 25 m/s. 

Ω, rev/min 0 3000 6000 9000 12000 15000 
F,  N 0 850 2260 2900 3120 3300 

(a) Reduce this data to the two dimensionless groups and make a plot.  (b) Use this plot to 
predict the lift of a cylinder with D = 5 cm, L = 80 cm, rotating at 3800 rev/min in water at U 
= 4 m/s. 

Solution:   (a) In converting the data, the writer suggests using Ω in rad/s, not rev/min.  For 
sea-level air, ρ = 1.2255 kg/m3.  Take, for example, the first data point, Ω = 3000 rpm x 
(2π/60) = 314 rad/s, and F = 850 N. 

 
  
Π1 =

F
ρU 2LD

=
850

(1.2255)(25)2(2.0m)(0.3m)
= 1.85 ; Π2 =

ΩD
U

=
(314)(0.3)

25
= 3.77  
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Do this for the other four data points, and plot as follows.         Ans.(a) 

                   

(b) For water, take ρ = 998 kg/m3.  The new data are D = 5 cm, L = 80 cm, 3800 rev/min in 
water at U = 4 m/s.   Convert 3800 rev/min = 398 rad/s.  Compute the rotation Pi group: 

  
Π2 =

ΩD
U

=
(398rad / s)(0.05m)

4m / s
= 4.97  

Read the chart for Π1.  The writer reads Π1 ≈ 2.8.   Thus we estimate the water lift force: 

   F = Π1ρU 2LD = (2.8)(998)(4)2(0.8m)(0.05m) ≈ 1788 N ≈ 1800 N Ans.(b)  

 

5.68 A simple flow-measurement device for streams and channels is a notch, of angle α, cut 
into the side of a dam, as shown in Fig. P5.68. The volume flow Q depends only on α, the 
acceleration of gravity g, and the height δ of the upstream water surface above the notch vertex. 
Tests of a model notch, of angle α = 55°, yield the following flow rate data: 

 

Fig. P5.68 
 

δ, cm: 10 20 30 40 
Q, m3/h: 8 47 126 263 

 
(a) Find a dimensionless correlation for the data. (b) Use the model data to predict the flow rate 
of a prototype notch, also of angle α = 55°, when the upstream height δ is 3.2 m. 
 
 
 
 

0 
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2 
3 
4 
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6 
7 
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F/(ρU2LD) 

ΩD/U 
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Solution: (a) The appropriate functional relation is Q = fcn(α, g, δ) and its dimensionless 
form is Q/(g1/2δ 

5/2) = fcn(α). Recalculate the data in this dimensionless form, with α constant: 

Q/(g1/2δ 
5/2) = 0.224 0.233 0.227 0.230 respectively Ans. (a) 

(b) The average coefficient in the data is about 0.23. Since the notch angle is still 55°, we may 
use the formula to predict the larger flow rate: 

Qprototype = 0.23g1/2δ5/2 = 0.23 9.81 m
s2








1/2

(3.2 m)5/2 ≈ 13.2 m3 / s Ans. (b)  

 

5.69 A diamond-shaped body, of characteristic length 23 cm, has the following measured drag 
forces when placed in a wind tunnel at sea-level standard conditions: 

 V, m/s:  9.14  11.58 14.63 17.07 18.59 

 F, N  5.56  8.67 13.43 18.02 21.34 

Use these data to predict the drag force of a similar 38-cm diamond placed at similar orientation 
in 20°C water flowing at 2.2 m/s. 
 
Solution: For sea-level air, take ρ  = 1.2 kg/m3, µ  = 1.8 ×10−5 N ⋅ s/m2.  For water at 20°C, 
take ρ  = 998 kg/m3,  µ  = 1.0038 ×10−3N ⋅ s/m2.  Convert the model data into drag coefficient 
and Reynolds number,  
 

Vm, m/s: 9.14 11.58 14.63 17.07 18.59 

F/(ρV2L2): 1.048 1.019 0.988 0.974 0.976 

ρVL/µ:  140000 178000 224000 262000 285000 

 
An excellent curve-fit to this data is the power-law 

CF ≈ 3.9ReL
−0.111 ±1%  

Now introduce the new case, Vproto = 2.2 m/s, Lproto = 38 cm. Then 

ReL,proto =
998 2.2( ) 0.38( )
1.003E−3

≈ 832000,  which is outside the range of the model data. Strictly 

speaking, we cannot use the model data to predict this new case. Ans. 
If we wish to extrapolate to get an estimate, we obtain 

 

CF,proto ≈
3.9

832000( )0.111
≈ 0.859 ≈

Fproto
998 2.2( )2 0.38( )2

,

or: Fproto ≈ 600 N Approximately  
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5.70 The pressure drop in a venturi meter (Fig. P3.135) varies only with the fluid density, pipe 
approach velocity, and diameter ratio of the meter. A model venturi meter tested in water at 20°C 
shows a 5-kPa drop when the approach velocity is 4 m/s. A geometrically similar prototype 
meter is used to measure gasoline at 20°C and a flow rate of 9 m3/min. If the prototype pressure 
gage is most accurate at 15 kPa, what should the upstream pipe diameter be? 
 
Solution: Given Δp = fcn(ρ, V, d/D), then by dimensional analysis Δp/(ρV2) = fcn(d/D). For 
water at 20°C, take ρ = 998 kg/m3. For gasoline at 20°C, take ρ = 680 kg/m3. Then, using the 
water ‘model’ data to obtain the function “fcn(d/D)”, we calculate 

Δpm

ρmVm
2 =

5000
(998)(4.0)2 = 0.313 =

Δpp

ρpVp
2 =

15000
(680)Vp

2 , solve for Vp ≈ 8.39 m
s

 

Given Q =
9
60

 m3

s
= VpAp = (8.39)π

4
Dp

2, solve for best Dp ≈ 0.151 m Ans.  

 

5.71 A torpedo 8 m below the surface in 20°C seawater cavitates at a speed of 21 m/s when 
atmospheric pressure is 101 kPa. If Reynolds-number and Froude-number effects are negligible, 
at what speed will it cavitate when running at a depth of 20 m? At what depth should it be to 
avoid cavitation at 30 m/s? 
 
Solution: For seawater at 20°C, take ρ = 1025 kg/m3 and pv = 2337 Pa. With Reynolds and 
Froude numbers neglected, the cavitation numbers must simply be the same: 

Ca = pa + ρgz − pv

ρV2 for Flow 1= 101000 + (1025)(9.81)(8)− 2337
(1025)(21)2 ≈ 0.396  

 (a) At z = 20 m:  Ca = 0.396 = 101000 +1025(9.81)(20) − 2337
1025Va

2 ,  

or Va ≈ 27.2 m
s

Ans. (a)  

(b) At Vb = 30 m
s

: Ca = 0.396 = 101000 +1025(9.81)zb − 2337
1025(30)2 ,  

or zb ≈ 26.5 m Ans. (b)  
 

5.72 The power P generated by a certain windmill design depends upon its diameter D, the air 
density ρ, the wind velocity V, the rotation rate Ω, and the number of blades n. 
(a) Write this relationship in dimensionless form. A model windmill, of diameter 50 cm, 
develops 2.7 kW at sea level when V = 40 m/s and when rotating at 4800 rev/min. (b) What 
power will be developed by a geometrically and dynamically similar prototype, of diameter 5 m, 
in winds of 12 m/s at 2000 m standard altitude? (c) What is the appropriate rotation rate of the 
prototype? 
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Solution: (a) For the function P = fcn(D, ρ, V, Ω, n) the appropriate dimensions are {P} = 
{ML2T−3}, {D} = {L}, {ρ} = {ML−3}, {V} = {L/T}, {Ω} = {T−1}, and {n} = {1}. Using (D, ρ, 
V) as repeating variables, we obtain the desired dimensionless function: 

P
ρD2V3

= fcn ΩD
V
, n






 Ans. (a)  

(c) “Geometrically similar” requires that n is the same for both windmills. For “dynamic 
similarity,” the advance ratio (ΩD/V) must be the same: 

ΩD
V





 model

=
(4800 r/min)(0.5 m)

(40 m/s)
= 1.0 = ΩD

V




 proto

=
Ωproto(5 m)

12 m/s
,

or: Ωproto = 144 
rev
min

Ans. (c)
 

(b) At 2000 m altitude, ρ = 1.0067 kg/m3. At sea level, ρ = 1.2255 kg/m3. Since ΩD/V and n are 
the same, it follows that the power coefficients equal for model and prototype: 

   

P
ρD2V 3 =

2700W
(1.2255)(0.5)2(40)3 = 0.138 =

Pproto

(1.0067)(5)2(12)3 ,

solve Pproto = 5990 W ≈ 6 kW Ans. (b)
 

 

5.73 A student needs to measure the drag on a prototype of characteristic length dp moving at 
velocity Up in air at sea-level conditions. He constructs a model of characteristic length dm, such 
that the ratio dp/dm = a factor f. He then measures the model drag under dynamically similar 
conditions, in sea-level air. The student claims that the drag force on the prototype will be 
identical to that of the model. Is this claim correct? Explain. 
 
Solution: Assuming no compressibility effects, dynamic similarity requires that 

Rem = Rep , or: ρmUmdm
µm

=
ρpUpdp
µp

, whence Um

Up
=
dp
dm

= f  

Run the tunnel at “f” times the prototype speed, then drag coefficients match: 

Fm

ρmUm
2 dm

2 =
Fp

ρ pU p
2dp

2 , or: Fm

Fp
=

Umdm

U pdp











2

=
f
f











2

= 1 Yes,  drags are the same!  

 

P5.74  Extend Prob. P5.20 as follows.     Let the maximum mass flow  again be a 
function of tank pressure po and temperature To, gas constant R, and nozzle diameter D, but 
replace cp by the specific heat ratio, k.  For an air tank at 190 kPa and 330 K, with a 2-cm 
nozzle diameter, experiments show a mass flow of 0.133 kg/s.  (a) Can this data be used to 
correlate an oxygen tank?  (b) If so, estimate the oxygen mass flow if the tank conditions are 
300 kPa and 450 K, with a nozzle diameter of 3 cm. 
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Solution:  Problem P5.20, with cp replaced by the specific heat ratio, k, led to the function 

   

m RTo

po D2
= fcn( k )  

For air, R = 287 m2/s2-K and k = 1.40.  The given data point reduces to 

   

m RTo

po D2
=

(0.133) (287)(330)
(190,000)(0.02)2

= 0.539 for k = 1.40  

(a)  Can we use this air data for oxygen?   Yes, because koxygen also equals 1.40.  So let’s do it.  
For oxygen, from Table A.4, R = 260 m2/s2-K and k = 1.40.  The correlation yields 

    

m RTo

po D2
=
m (260)(450)

(300,000)(0.03)2
= 0.539, solve for moxygen = 0.425 kg / s Ans.(b)  

 

P5.75  A one-twelfth-scale model of a large commercial aircraft is tested in a wind 
tunnel at 20°C and 1 atm.  The model chord length is 27 cm, and its wing area is 0.63 m2.  
Test results for the drag of the model are as follows: 

V, km/h 80 120 160 200 

Drag, N 15 32 53 80 

In the spirit of Fig. 5.8, use this data to estimate the drag of the full-scale aircraft when flying 
at 880 km/h, for the same angle of attack, at 10 km standard altitude.  Neglect Mach number 
differences between model and prototype. 

Solution:  Compute the model drag coefficients and Reynolds numbers, plot them, and 
extrapolate in the spirit of Fig. 5.8 of the text.  For the first point, 80 km/h = 22.22 m/s.  At 20°C 
and 1 atm, ρ = 1.20 kg/m3 and µ = 1.8E-5 kg/m-s.  Compute the first dimensionless data point: 

  

CD =
F

(1 / 2)ρV 2 A
=

15N
(1 / 2)(1.20)(22.22)2(0.63)

= 0.080

Rechord =
ρVc
µ

=
(1.20)(22.22)(0.27)

1.8E −5
= 400,000

 

Do this for all four model data points: 

Rec 400,000 600,000 800,000 1,000,000 

CD 0.080 0.076 0.071 0.069 
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Now plot them and extrapolate to the prototype Reynolds number.  At 10 km = 10,000 m, ρ = 
0.4125 kg/m3 and µ ≈ 1.5E-5 kg/m-s (at that altitude, T = 223 K).  Full-scale c = 12(0.27) = 
3.24 m, and the full-scale wing area is A = (12)2(0.63) =  90.7 m2.  The full-scale velocity is 
880 km/h = 244.4 m/s.   Full-scale Reynolds number is Rep = (0.4125)(244.4)(3.24)/(1.5E-5) 
= 21,776,040, or log(Rep) = 7.34.   The log-log plot and extrapolation would look like this: 

 

You can see that it is a long way out from those four closely packed model points to a 
Reynolds number of 21,776,040.  Uncertainty is high.  The model curve-fit CD ≈ 0.82/Re0.18 
can be used to estimate CD(prototype) = 0.82/(21,776,040) 0.18 ≈ 0.039.  Our rather uncertain 
estimate for the drag of the full-scale aircraft is thus 

   
  
Full-scale drag ≈ CD (ρ p / 2)Vp

2 Ap = (0.039)(0.4125 / 2)(244.4)2(90.7)  

  ≈ 43,580 N   Ans.  
 

5.76 A one-tenth-scale model of a supersonic wing tested at 700 m/s in air at 20°C and  
1 atm shows a pitching moment of 0.25 kN·m. If Reynolds-number effects are negligible, what 
will the pitching moment of the prototype wing be flying at the same Mach number at 8-km 
standard altitude? 
 
Solution: If Reynolds number is unimportant, then the dimensionless moment coefficient 
M/(ρV2L3) must be a function only of the Mach number, Ma = V/a. For sea-level air, take ρ = 
1.225 kg/m3 and sound speed a = 340 m/s. For air at 8000-m standard altitude (Table A-6), take 
ρ = 0.525 kg/m3 and sound speed a = 308 m/s. Then 

Mam =
Vm

am
=

700
340

= 2.06 = Map =
Vp

308
, solve for Vp ≈ 634 m

s
 

Then Mp =Mm
ρpVp

2Lp
3

ρmVm
2Lm

3









 = 0.25

0.525
1.225





634
700






2 10
1






3

≈ 88 kN⋅m Ans.  
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5.77 The pressure drop per unit length Δp/L in smooth pipe flow is known to be a function only 
of the average velocity V, diameter D, and fluid properties ρ and µ. The following data were 
obtained for flow of water at 20°C in an 8-cm-diameter pipe 50 m long: 

Q, m3/s 0.005 0.01 0.015 0.020 

Δp, Pa 5800 20,300 42,100 70,800 

Verify that these data are slightly outside the range of Fig. 5.10. What is a suitable power-law 
curve fit for the present data? Use these data to estimate the pressure drop for 
flow of kerosene at 20°C in a smooth pipe of diameter 5 cm and length 200 m if the flow rate is 
50 m3/h. 
 
Solution: For water at 20°C, take ρ ≈ 998 kg/m3 and µ ≈ 0.001 kg/m⋅s. In the spirit of Fig. 
5.10 and Example 5.7 in the text, we generate dimensionless Δp and V: 

Q, m3/s: 0.005 0.010 0.015 0.020 

V = Q/A, m/s: 0.995 1.99 2.98 3.98 

Re = ρVD/µ: 79400 158900 238300 317700 

ρD3Δp/(Lµ2): 5.93E7 2.07E8 4.30E8 7.24E8 

These data, except for the first point, exceed Re = 1E5 and are thus off to the right of the plot in 
Fig. 5.10. They could fit a “1.75” Power-law, as in Ans. (c) as in Ex. 5.7 of the text, but only to 
±4%. They fit a “1.80” power-law much more accurately: 

ρΔpD3

Lµ2 ≈ 0.0901 ρVD
µ







1.80

±  1%  

For kerosene at 20°C, take ρ ≈ 804 kg/m3 and µ ≈ 1.92E−3 kg/m·s. The new length is 200 m, the 
new diameter is 5 cm, and the new flow rate is 50 m3/hr. Then evaluate Re: 

V =
50/3600

(π/4)(0.05)2 ≈ 7.07 m
s

, and ReD =
ρVD
µ

=
804(7.07)(0.05)

1.92E−3
≈ 148100  

Then ρΔpD3/(Lµ2 ) ≈ 0.0901(148100)1.80 ≈ 1.83E8 = (804)Δp(0.05)3

(200)(1.92E−3)2
 

 Solve for Δp ≈ 1.34E6 Pa Ans.  
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P5.78     According to the web site USGS Daily Water Data for the Nation, the mean flow rate in 
the New River near Hinton, WV is 286 m3/s.  If the hydraulic model in Fig. 5.9 is to match this 
condition with Froude number scaling, what is the proper model flow rate? 
 
Solution:  For Froude scaling, the volume flow rate is a blend of velocity and length terms: 

Qm

Qp

=
Vm
Vp

Am
Ap

=
Lm
Lp

(Lm
Lp

)2 = (Lm
Lp

)5/2 or α 5 /2

Fig.5 / 9 :α = 1:65 ; ∴ Qmodel = 286 m3

s






1

65






5 /2

=8.4 ×10−3 m3

s
Ans.

 

_________________________________________________________________________ 

5.79 A dam spillway is to be tested by using Froude scaling with a one-thirtieth-scale model. 
The model flow has an average velocity of 0.6 m/s and a volume flow of 0.05 m3/s. What will 
the velocity and flow of the prototype be? If the measured force on a certain part of the model is 
1.5 N, what will the corresponding force on the prototype be? 

 
Solution: Given α = Lm/Lp = 1/30, Froude scaling requires that 

Vp =
Vm

√α
=

0.6
(1/30)1/2 ≈ 3.3

m
s

; Qp =
Qm

α 5/2 =
0.05

(1/30)5/2 ≈ 246 m
3

s
Ans. (a)  

The force scales in similar manner, assuming that the density remains constant (water): 

  
Fp = Fm

ρp

ρm











Vp

Vm











2
Lp

Lm











2

= Fm (1) 1
√α








2
1
α







2

= (1.5N)(30)3 ≈ 40500 N Ans. (b)  

 

5.80 A prototype spillway has a characteristic velocity of 3 m/s and a characteristic length of 
10 m. A small model is constructed by using Froude scaling. What is the minimum scale ratio of 
the model which will ensure that its minimum Weber number is 100? Both flows use water at 
20°C. 
 
Solution: For water at 20°C, ρ = 998 kg/m3 and Y = 0.073 N/m, for both model and prototype.  
Evaluate the Weber number of the prototype: 

Wep =
ρpVp

2Lp

Yp
=

998(3.0)2 (10.0)
0.073

≈ 1.23E6; for Froude scaling,  

Wem
Wep

=
ρm
ρp

Vm
Vp











2
Lm
Lp










Yp
Ym







= (1)( α )2 (α )(1) = α 2 =

100
1.23E6

if α = 0.0090  

Thus the model Weber number will be ≥100 if α = Lm/Lp ≥ 0.0090 = 1/111. Ans. 
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5.81 A prototype ship is 35 m long and designed to cruise at 11 m/s (about 21 kn). Its drag is to 
be simulated by a 1-m-long model pulled in a tow tank. For Froude scaling find (a) the tow 
speed, (b) the ratio of prototype to model drag, and (c) the ratio of prototype to model power. 
 
Solution: Given α = 1/35, then Froude scaling determines everything: 

Vtow =  Vm =  Vp√α = 11/√(35) ≈ 1.86 m / s 

Fm/Fp = (Vm/Vp )2(Lm/Lp )2 = (√α )2 (α )2 = α 3 = (1/35)3 ≈
1

42900
Ans.

 

Pm/Pp = (Fm/Fp )(Vm/Vp ) = α
3(√α ) = α 3.5 = 1/353.5 ≈ 1

254000
 

 

5.82 An airplane, of overall length 16.8 m, is designed to fly at 680 m/s at 8000-m standard 
altitude. A one-thirtieth-scale model is to be tested in a pressurized helium wind tunnel at 20°C. 
What is the appropriate tunnel pressure in atm? Even at this (high) pressure, exact dynamic 
similarity is not achieved. Why? 
 
Solution: For air at 8000-m standard altitude (Table A-6), take ρ = 0.525 kg/m3, µ = 
1.53E−5 kg/m⋅s, and sound speed a = 308 m/s. For helium at 20°C (Table A-4), take gas constant 
R = 2077 J/(kg·°K), µ = 1.97E−5 kg/m·s, and a = 1005 m/s. For similarity at this supersonic 
speed, we must match both the Mach and Reynolds numbers. 

Map =
680
308

= 2.21 = Mam =
Vm

1005
, solve for Vmodel ≈ 2219 m

s
 

Rep =
ρVL
µ
|p=

0.525(680)(16.8)
1.53E−5

= 3.91E8 = Rem =
ρHe(2219)(16.8/30)

1.97E−5
 

Solve for ρHe ≈ 6.21 kg/m3 =
p

RT
=

pHe

(2077)(293)
,

or pHe ≈ 3.78 MPa = 37.3 atm Ans.
 

Even with Ma and Re matched, true dynamic similarity is not achieved, because the specific heat 
ratio of helium, k ≈ 1.66, is not equal to kair ≈ 1.40. 

 

5.83 A one-fortieth-scale model of a ship’s propeller is tested in a tow tank at 1200 r/min and 
exhibits a power output of 1.9 W. According to Froude scaling laws, what should the revolutions 
per minute and horsepower output of the prototype propeller be under dynamically similar 
conditions? 
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Solution: Given α = 1/40, use Froude scaling laws: 

Ωp/Ωm = Tm/Tp = √α, thus Ωp =
1200
(40)1/2 ≈ 190 rev

min
Ans. (a)  

Pp = Pm
ρp

ρm







Ωp

Ωm








3 Dp

Dm








5

= 1.9( ) 1( ) 1
40







3

40( )5

= 769,066 W = 1031 hp Ans. (b)

 

 

5.84 A prototype ocean-platform piling is expected to encounter currents of 150 cm/s and 
waves of 12-s period and 3-m height. If a one-fifteenth-scale model is tested in a wave channel, 
what current speed, wave period, and wave height should be encountered by the model? 
 
Solution: Given α = 1/15, apply straight Froude scaling (Fig. 5.6b) to these results: 

Velocity: Vm = Vp√α =
150
√15

= 39 cm
s

 

Period: Tm = Tp √α =
12
√15

= 3.1 s; Height: Hm =αHp =
3

15
= 0.20 m Ans.

 
 

5.85 A 0.6-m-long model of a ship is tested in a freshwater tow tank. The measured drag may 
be split into “friction” drag (Reynolds scaling) and “wave” drag (Froude scaling). The model 
data are as follows: 

Tow speed, m/s: 0.24 0.49 0.73 0.98 1.22 1.46 

Friction drag, N: 0.071 0.254 0.543 0.925 1.401 1.962 

Wave drag, N: 0.009 0.093 0.369 1.125 2.264 3.100 

The prototype ship is 46 m long. Estimate its total drag when cruising at 15 kn in seawater at 
20°C. 

Solution: For fresh water at 20°C, take ρ = 998 kg/m3, µ = 1.003E−3 N⋅s /m2. Then evaluate 
the Reynolds numbers and the Froude numbers and respective force coefficients: 
 

Vm, m/s: 0.24 0.49 0.73 0.98 1.22 1.46 

Rem = VmLm/ν: 143000 293000 436000 585000 728000 873000 

CF,friction: 0.0034 0.0029 0.0028 0.0027 0.0026 0.0026 

Frm = Vm/√(gLm): 0.099 0.202 0.301 0.404 0.503 0.602 

CF, wave: 0.00043 0.0011 0.0019 0.0033 0.0042 0.004 
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For seawater, take ρ = 998 kg/m3, µ = 1.003E−3 N⋅s /m2. With Lp = 46 m and Vp = 15 knots = 
7.65 m/s, evaluate 

Reproto =
ρpVpLp
µp

=
998 7.65( ) 46( )
1.003E−3

≈ 3.5E8; Frp =
7.65

9.81 46( ) 
1/2 ≈ 0.36

 

For Fr ≈ 0.36, interpolate to CF,wave ≈ 0.0027  
Thus we can immediately estimate Fwave ≈ 0.0027(998)(7.65)2(46)2 ≈ 333,922 N. However, as 
mentioned in Fig. 5.8 of the text, Rep is far outside the range of the friction force data, 
therefore we must extrapolate as best we can. A power-law curve-fit is 

CF,friction ≈
0.0178
Re0.144

, hence CF,proto ≈
0.0178

(3.5E8)0.144
≈ 0.00105

 

Thus Ffriction ≈ 0.00105(998)(7.65)2)(46)2 ≈ 129,765 N. Ftotal ≈ 463,687 N. Ans. 

 

5.86 An East Coast estuary has a tidal period of 12.42 h (the semidiurnal lunar tide) and tidal 
currents of approximately 80 cm/s. If a one-five-hundredth-scale model is constructed with tides 
driven by a pump and storage apparatus, what should the period of the model tides be and what 
model current speeds are expected? 
 
Solution: Given Tp = 12.42 hr, Vp = 80 cm/s, and α = Lm/Lp = 1/500. Then: 

Froude scaling: Tm = Tp α =
12.42

500
= 0.555 hr ≈ 33 min Ans. (a)  

Vm = Vp α = 80 (500) ≈ 3.6 cm / s Ans. (b)  

 

P5.87  A one-fiftieth scale model of a military airplane is tested at 1020 m/s in a wind 
tunnel at sea-level conditions.  The model wing area is 180 cm2.  The angle of attack is 3 
degrees.  If the measured model lift is 860 N, what is the prototype lift, using Mach number 
scaling, when it flies at 10,000 m standard altitude under dynamically similar conditions?  
[NOTE: Be careful with the area scaling.] 

Solution:   At sea-level, ρ = 1.2255 kg/m3 and T = 288 K.  Compute the speed of sound and 
Mach number for the model: 

 
  
am = kRT = 1.4(287)(288) = 340 m

s
; Mam =

Vm
am

=
1020m / s
340m / s

= 3.0  

Now compute the lift-force coefficient of the model: 

 
  
CL,m =

Fm

(1 / 2)ρmVm
2 Am

=
860 N

(1 / 2)(1.2255kg / m3)(1020m / s)2(0.0180m2 )
= 0.0749  
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For dynamically similar conditions, the prototype must have the same lift coefficient.  At 
10,000 m standard altitude, from Table A.6, read ρ = 0.4125 kg/m3 and T = 223.16 K.  The 
prototype wing area is (0.0180m2)(50)2 =  45 m2.  (The writer cautioned about this scaling.)  
Then compute 

       

ap = kRT= 1.4(287)(223) = 299m / s, then Vp = Mapap = (3.0)(299) = 898m / s

Fproto = CL, p
ρ p

2
Vp

2 Ap = (0.0749)(0.4125
2

)(898)2(45) = 561,000 N Ans.
 

 

5.88 Solve Prob. 5.52 for glycerin, using the modified sphere-drag plot of Fig. 5.11. 
 
Solution: This problem is identical to Prob. 5.94 later in the text except that the fluid is 
glycerin, with ρ = 1260 kg/m3 and µ = 1.49 kg/m·s. Evaluate the net weight: 

W = (7800 −1260)(9.81)π
6

(0.025)3 ≈ 0.525 N, whence ρF
µ2

=
1260(0.525)

(1.49)2 ≈ 298  

From Fig. 5.11 read Re ≈ 15, or V = 15(1.49)/[1260(0.025)] ≈ 0.7 m/s. Ans. 

 

5.89 Knowing that Δp is proportional to L, rescale the data of Example 5.10 to plot 
dimensionless Δp versus dimensionless viscosity. Use this plot to find the viscosity required in 
the first row of data in Example 5.10 if the pressure drop is increased to 10 kPa for the same flow 
rate, length, and density. 

 
Solution: Recall that Example 5.7, where Δp/L = fcn(ρ, V, µ, D), led to the correlation 

ρD3Δp
Lµ2

≈ 0.155 ρVD
µ











1.75

, which is awkward because µ occurs on both sides. 

We can form a “µ-free” parameter by dividing the left side by Reynolds-number-squared: 

 Π4 =
ρD3Δp/Lµ2

(ρVD/µ)2
=
ΔpD
ρV2L

≈
0.155

(ρVD/µ)0.25
 (3) 

Correlation “3” can now be used to solve for an unknown viscosity. The data are the first row of 
Example 5.7, with viscosity unknown and a new pressure drop listed: 

L = 5 m; D = 1 cm; Q = 0.3 m3/hr; Δp = 10,000 Pa; ρ = 680 kg
m3 ; V = 1.06 m

s
 

Evaluate Π4 =
(10000)(0.01)

(680)(1.06)2(5.0)
= 0.0262 =? 0.155

Re0.25 , or Re ≈ 1230 ???  

This is a trap for the unwary: Re = 1230 is far below the range of the data in Ex. 5.7, for which 
15000 < Re < 95000. The solution cannot be trusted and in fact is quite incorrect, for the flow 
would be laminar and follow an entirely different correlation. Ans. 
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P5.90   Wall friction τw, for turbulent flow at velocity U in a pipe of diameter D, was 
correlated, in 1911, with a dimensionless correlation by Ludwig Prandtl’s student H. Blasius: 

  

τw

ρU 2
≈

0.632
(ρUD / µ)1/4

 

Suppose that (ρ, U, µ, τw) were all known and it was desired to find the unknown velocity U.  
Rearrange and rewrite the formula so that U can be immediately calculated. 

Solution:  The easiest path the writer can see is to get rid of U2 on the left hand side by 
multiplying both sides by the Reynolds number squared: 

  

τw

ρU 2
(ρUD
µ

)2 =
τw ρD2

µ2
≈

0.632
(ρUD / µ)1/4

(ρUD
µ

)2 = 0.632(ρUD
µ

)7/4

Solve for (ρUD
µ

) and clean up : ρUD
µ

≈ 1.30(
τw ρD2

µ2
)4/7 Ans.

 

 

*P5.91     The traditional “Moody-type” pipe friction correlation in Chap. 6 is of the form 

f =
2ΔpD
ρV 2 L

= fcn ρVD
µ
, ε
D











 
where  D is the pipe diameter, L the pipe length, and ε  the wall roughness.  Note that fluid 
average velocity V is used on both sides.  This form is meant to find Δp when V is known. 

(a) Suppose that Δp is known and we wish to find V.  Rearrange the above function so that V is 
isolated on the left-hand side.  Use the following data, for ε/D = 0.005, to make a plot of your 
new function, with your velocity parameter as the ordinate of the plot. 
 

f 0.0356 0.0316 0.0308 0.0305 0.0304 

ρVD/µ 15,000 75,000 250,000 900,000 3,330,000 

 
(b)  Use your plot to determine V, in m/s, for the following pipe flow:  D = 5 cm, ε = 0.025 cm,  
L = 10 m, for water flow at 20°C and 1 atm.  The pressure drop Δp is 110 kPa. 
 
Solution:  We can eliminate V from the left side by multiplying by Re2.  Then rearrange: 

ReD = fcn( f ReD
2 , ε

D
) , or : ρVD

µ
= fcn( 2ρD

3Δp
Lµ2

, ε
D
)  

We can add a third row to the data above and make a log-log plot: 

f ReD
2 8.01E6 1.78E8 1.92E9 2.47E10 3.31E11 
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It is a pretty good straight line on a log-log plot, which means a power-law.  A good fit is    

ρVD
µ

≈ 4.85 ( 2ρD
3 Δp

L µ2
)0.507 for ε

D
= 0.005  

Different power-law constants would be needed for other roughness ratios. 
(b)    Given pipe pressure drop data.  For water, take  ρ = 998 kg/m3 and µ = 0.001 kg/m-s.  

Calculate the value of (f ReD
2) for this data: 

f ReD
2 =

2ρD3 Δp
L µ2

=
2(998kg / m3)(0.05m)3(110000Pa)

(10m)(0.001kg / m − s)2
= 2.75E9

Power − law : ρVD
µ

= 4.85(2.75E9)0.507 ≈ 296,000 =
(998)V (0.05)

0.001

Solve for V ≈ 5.93 m / s Ans.(b)

 

 

5.92 In Prob. 5.64 it would  be difficult to solve for Ω because it appears in all three 
dimensionless coefficients. Rescale the problem, using the data of Fig. P5.64, to make a plot of 
dimensionless power versus dimensionless rotation speed. Enter this plot directly to solve for 
Ω for D = 12 cm, Q = 25 m3/hr, and a maximum power P = 300 W, in gasoline at 20°C. 

 

 
Fig. P5.64 

 

4 

5 

6 

7 

6 7 8 9 10 11 12 

log(f ReD
2) 

log(ReD) 
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Solution: For gasoline, ρ = 680 kg/m3 and µ = 2.92E−4 kg/m·s. We can eliminate Ω from the 
power coefficient for a new type of coefficient: 

Π3 =
P

ρΩ3D5 ⋅
Ω3D9

Q3 =
PD4

ρQ3
, to be plotted versus Q

ΩD3  

 

The plot is shown below, as computed from the expressions in Fig. P5.64. 
 

 
Fig. P5.92 

Below Π3 < 10,000, an excellent Power-law curve-fit is (Q/ΩD3) ≈ 1.43/Π3
0.4 ±1%.  

We use the given data to evaluate Π3 and hence compute Q/ΩD3: 

Π3 =
(300)(0.12)4

(680)(25/3600)3 = 273, whence Q
ΩD3 ≈

1.43
(273)0.4 ≈ 0.152 = 25/3600

Ω(0.12)3

Solve for Ω ≈ 26.5 rev / s Ans.

 

 

5.93 Modify Prob. 5.64 as follows: Let Ω = 32 r/s and Q = 24 m3/h for a geometrically similar 
pump. What is the maximum diameter if the power is not to exceed 340 W? Solve this 
problem by rescaling the data of Fig. P5.64 to make a plot of dimensionless power versus 
dimensionless diameter. Enter this plot directly to find the desired diameter. 
 
Solution: We can eliminate D from the power coefficient for an alternate coefficient: 

Π4 =
P

ρΩ3D5 ⋅
ΩD3

Q







5/3

=
P

ρΩ4/3Q5/3
, to be plotted versus Q

ΩD3  
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The plot is shown below, as computed from the expressions in Fig. P5.64. 

 
Fig. P5.93 

Below Π4 < 1,000, an excellent Power-law curve-fit is (Q/ΩD3) ≈ 2.12/Π4
0.85 ±1%.  

We use the given data to evaluate Π4 and hence compute Q/ΩD3:  

 
Π4 =

340
680(32)4/3(24/3600)5/3 = 20.8, whence Q

ΩD3 =
2.12

(20.8)0.85 ≈ 0.161= 24/3600
32D3  

Solve for   D    ≈    0.11  m       Ans. 

 

*P5.94     As shown in Ex. 5.3, pump performance data can be non-dimensionalized.  
Problem P5.64 gave typical dimensionless data for centrifugal pump “head”, H  = Δp/ρg, as 
follows: 

gH
n2D2 ≈ 6.0 − 120( Q

nD3 )
2

 

where Q is the volume flow rate, n the rotation rate in r/s, and D the impeller diameter.  This type 
of correlation allows one to compute H when (r, Q, D) are known.  (a) Show how to rearrange 
these Pi groups so that one can size the pump, that is, compute D directly when (Q, H, n) are 
known.  (b)  Make a crude but effective plot of your new function.  (c) Apply part (b) to the 
following example: When H = 37 m, Q = 0.14 m3/s, and n = 35 r/s, find the pump diameter for 
this condition. 
 
Solution:  (a) We have to eliminate D from one or the other of the two parameters.  The writer 
chose to remove D from the left side.  The new parameter will be 

Π3 =
gH
n2D2 (

nD3

Q
)2/3 =

gH
n4 /3Q2 /3

 
nD3

Q
= fcn( gH

n4 /3Q2 /3 )
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For convenience, we inverted the right-hand parameter to feature D.   Thus the function will 
enable one to input  (Q, H, n) and immediately solve for the impeller diameter.    Ans.(a) 

 

(b)  The new variable hopelessly complicates the algebra of the original parabolic formula.  
However, with a little (well, maybe a lot of) work, one can compute and plot a few values: 

                          

It fits a least-squared exponential curve quite well, as you see.      Ans.(b) 

gH
n4 /3Q2 /3 =

(9.81m / s2 )(37m)
(35r / s)4 /3(0.14m3 / s)2/3

= 11.76 Hence

nD3

Q
≈ 4.41exp[0.0363(11.76)] = 6.76 = 35D

3

0.14
, Solve D ≈ 0.30m Ans.(c)

 

(c)  For the given data, H = 37 m, Q = 0.14 m3/s, and n = 35 r/s, calculate Π3: 

A 30-cm pump fits these conditions.  These P value solutions are shown on the crude plot 
above.  [NOTE: This problem was set up from the original parabolic function by using D = 30 
cm, so the curve-fit is quite accurate.] 

 

y = 4.41e0.0363x 

0 

5 

10 

15 

20 

0 10 20 30 40 50 

Part (c) 

nD3/Q = 6.76 

nD3/Q 

gH/(n4/3Q2/3) 
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FUNDAMENTALS OF ENGINEERING EXAM PROBLEMS: Answers 

FE5.1 Given the parameters (U, L, g, ρ, µ) which affect a certain liquid flow problem. The 
ratio V2/(Lg) is usually known as the 
(a) velocity head  (b) Bernoulli head  (c) Froude No.  (d) kinetic energy  (e) impact energy 

FE5.2 A ship 150 m long, designed to cruise at 18 knots, is to be tested in a tow tank with a 
model 3 m long. The appropriate tow velocity is 

(a) 0.19 m/s (b) 0.35 m/s (c) 1.31 m/s (d) 2.55 m/s (e) 8.35 m/s 

FE5.3 A ship 150 m long, designed to cruise at 18 knots, is to be tested in a tow tank with a 
model 3 m long. If the model wave drag is 2.2 N, the estimated full-size ship wave drag is 

(a) 5500 N (b) 8700 N (c) 38900 N (d) 61800 N (e) 275000 N 

FE5.4 A tidal estuary is dominated by the semi-diurnal lunar tide, with a period of 12.42 hours. 
If a 1:500 model of the estuary is tested, what should be the model tidal period? 

(a) 4.0 s (b) 1.5 min (c) 17 min (d) 33 min (e) 64 min 

FE5.5 A football, meant to be thrown at 96 km/h in sea-level air (ρ = 1.22 kg/m3,  
µ = 1.78E−5 N⋅s/m2) is to be tested using a one-quarter scale model in a water tunnel  
(ρ = 998 kg/m3, µ = 0.0010 N⋅s/m2). For dynamic similarity, what is the proper model water 
velocity? 

(a) 12 km/h (b) 24 km/h  (c) 25 km/h  (d) 26.4 km/h (e) 48 km/h 

FE5.6 A football, meant to be thrown at 96 km/h in sea-level air (ρ = 1.22 kg/m3,  
µ = 1.78E−5 N⋅s/m2) is to be tested using a one-quarter scale model in a water tunnel  
(ρ = 998 kg/m3, µ = 0.0010 N⋅s/m2). For dynamic similarity, what is the ratio of model force to 
prototype force? 

(a) 3.86:1 (b) 16:1 (c) 32:1 (d) 56.2:1 (e) 64:1 

FE5.7 Consider liquid flow of density ρ, viscosity µ, and velocity U over a very small model 
spillway of length scale L, such that the liquid surface tension coefficient Y is important. The 
quantity ρU2L/Y in this case is important and is called the 

(a) capillary rise (b) Froude No. (c) Prandtl No. (d) Weber No. (e) Bond No. 

FE5.8 If a stream flowing at velocity U past a body of length L causes a force F on the body 
which depends only upon U, L and fluid viscosity µ, then F must be proportional to 

(a) ρUL/µ (b) ρU2L2 (c) µU/L (d) µUL (e) UL/µ 
FE5.9 In supersonic wind tunnel testing, if different gases are used, dynamic similarity requires 
that the model and prototype have the same Mach number and the same 

(a) Euler number (b) speed of sound (c) stagnation enthalpy  
(d) Froude number (e) specific heat ratio 
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FE5.10 The Reynolds number for a 30.5-cm-diameter sphere moving at 3.68 km/h through 
seawater (specific gravity 1.027, viscosity 1.07E−3 N⋅s/m2) is approximately 

(a) 300 (b) 3000 (c) 30,000 (d) 300,000 (e) 3,000,000 

FE5.11  The Ekman number, important in physical oceanography, is a dimensionless 
combination of µ, L, ρ, and the earth’s rotation rate Ω.  If the Ekman number is proportional 
to Ω, it should take the form 

        (a)ρΩ2L2 / µ (b) µΩL / ρ (c) ρΩL / µ (d) ρΩL2 / µ (e) ρΩ / Lµ  

FE5.12     A valid, but probably useless, dimensionless group is given by   (µTog) / (ϒLα) , 
where everything has its usual meaning, except α.  What are the dimensions of α ? 

         (a) θL-1T -1 (b) θL-1T -2 (c) θML-1 (d) θ -1LT -1 (e) θLT -1
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COMPREHENSIVE PROBLEMS 

C5.1 Estimating pipe wall friction is one of the most common tasks in fluids engineering. For 
long circular, rough pipes in turbulent flow, wall shear τw is a function of density ρ, viscosity µ, 
average velocity V, pipe diameter d, and wall roughness height ε. Thus, functionally, we can 
write τw = fcn(ρ, µ, V, d, ε). (a) Using dimensional analysis, rewrite this function in 
dimensionless form. (b) A certain pipe has d = 5 cm and ε = 0.25 mm. For flow of water at 20°C, 
measurements show the following values of wall shear stress: 
 

Q (in L/min) ~ 5.68 11.36 22.71 34.07 45.42 53.0 
τw (in Pa) ~ 0.05 0.18 0.37 0.64 0.86 1.25 

 
Plot this data in the dimensionless form suggested by your part (a) and suggest a curve-fit 
formula. Does your plot reveal the entire functional relation suggested in your part (a)? 
 
Solution: (a) There are 6 variables and 3 primary dimensions, therefore we expect 3 Pi groups. 
The traditional choices are: 

τw
ρV 2 = fcn ρVd

µ
,  ε
d









 or: Cf = fcn Re,

ε
d







 Ans. (a)

 

(b) In nondimensionalizing and plotting the above data, we find that ε/d = 0.25 mm/50 mm = 
0.005 for all the data. Therefore we only plot dimensionless shear versus Reynolds number, 
using ρ = 998 kg/m3 and µ = 0.001 kg/m⋅s for water. The results are tabulated as follows: 
 

  V, m/s   Re   Cf 
0.0481972 2405 0.021567 
0.0963944 4810 0.019411 
0.1927888 9620 0.009975 
0.2891832 14430 0.007668 
0.3855776 19240 0.005796 
0.4498406 22447 0.00619 

 
When plotted on log-log paper, Cf versus Re makes a slightly curved line. 
A reasonable power-law curve-fit is shown on the chart: Cf ≈ 3.63Re−0.642 with 95% correlation. 
Ans. (b) 
This curve is only for the narrow Reynolds number range 2000−22000 and a single ε/d. 
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C5.2 When the fluid exiting a nozzle, as in Fig. P3.54, is a gas, instead of water, 
compressibility may be important, especially if upstream pressure p1 is large and exit diameter 
d2 is small. In this case, the difference (p1 − p2) is no longer controlling, and the gas mass 
flow,  reaches a maximum value which depends upon p1 and d2 and also upon the 
absolute upstream temperature, T1, and the gas constant, R. Thus, functionally, 

 
m = fcn(p1, d2, T1, R).  (a) Using dimensional analysis, rewrite this function in dimensionless 

form. (b) A certain pipe has d2 = 1 cm. For flow of air, measurements show the following values 
of mass flow through the nozzle: 
 
  
T1 (in °K) 300 300 300 500 800 
p1 (in kPa) 200 250 300 300 300 

 (in kg/s) 0.037 0.046 0.055 0.043 0.034 
 
Plot this data in the dimensionless form suggested by your part (a). Does your plot reveal the 
entire functional relation suggested in your part (a)? 
 
Solution: (a) There are n = 5 variables and j = 4 dimensions (M, L, T, Θ), hence we expect 
only n − j = 5 − 4 = 1 Pi group, which turns out to be 

 

Π1 =
m RT1
p1d2

2 = Constant Ans. (a)  

(b) The data should yield a single measured value of Π1 for all five points: 
 

T1 (in °K)    ~ 300 300 300 500 800 

 
m (RT1)/(p1d2

2 ):  0.543 0.540 0.538 0.543 0.543 

 
Thus the measured value of Π1 is about  0.543 ± 0.005 (dimensionless), which is very close to 
the theoretical value of 0.538 developed in Chap. 9 for air, k = 1.40. The problem asks you to 
plot this function, but since it is a constant, we shall not bother. Ans. (a, b) 

 

C5.3 Reconsider the fully-developed drain-ing vertical oil-film problem (see Fig. P4.91) as an 
exercise in dimensional analysis. Let the vertical velocity be a function only of distance from the 
plate, fluid properties, gravity, and film thickness. That is, w = fcn(x, ρ, µ, g, δ). 
(a) Use the Pi theorem to rewrite this function in terms of dimensionless parameters.  
b) Verify that the exact solution from Prob. 4.91 is consistent with your result in part (a). 
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Solution: There are n = 6 variables and j = 3 dimensions (M, L, T), hence we expect only n − j 
= 6 − 3 = 3 Pi groups. The author selects (ρ, g, δ) as repeating variables, whence 

Π1 =
w
gδ
; Π2 =

µ

ρ gδ 3
; Π3 =

x
δ

 

Thus the expected function is 

w
gδ

= fcn µ

ρ gδ 3
, x
δ









 Ans. (a)  

(b) The exact solution from Problem 4.80 can be written in just this form: 

 

w = ρgx
2µ

(x − 2δ), or: w
gδ

µ

ρ gδ3
=

1
2
x
δ

x
δ
− 2








                    
Π1 Π2 Π3

 

Yes, the two forms of dimensionless function are the same. Ans. (b) 

 

C5.4 The Taco Inc. Model 4013 centrifugal pump has an impeller of diameter D = 32.89 cm. 
When pumping 20°C water at Ω = 1160 rev/min, the measured flow rate Q and pressure rise Δp 
are given by the manufacturer as follows: 
 

Q (L/min) ~ 757.08 1135.62 1514.16 1892.7 2271.24 2649.78 

Δp (kPa) ~ 248.21 241.32 234.42 220.63 199.95 158.58 

 

(a) Assuming that Δp = fcn(ρ, Q, D, Ω), use the Pi theorem to rewrite this function in terms 
of dimensionless parameters and then plot the given data in dimensionless form. (b) It is 
desired to use the same pump, running at 900 rev/min, to pump 20°C gasoline at 
1514.16 L/min. According to your dimensionless correlation, what pressure rise Δp is 
expected, kPa? 
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Solution: There are n = 5 variables and j = 3 dimensions (M, L, T), hence we expect  
n − j = 5 − 3 = 2 Pi groups. The author selects (ρ, D, Ω) as repeating variables, whence 

Π1 =
Δp

ρΩ2D2 ; Π2 =
Q
ΩD3 , or: Δp

ρΩ2D2
= fcn Q

ΩD3






 Ans. (a)  

Using Ω = 121.45 rad/s, D = 32.89 cm, ρ = 998 kg/m3, and use Δp in kPa, and Q in L/min: 

 

Q (L/min) ~ 757.08 1135.62 1514.16 1892.7 2271.24 2649.78 

Δp/(ρΩ2D2):  0.1559 0.1515 0.1472 0.1386 0.1256 0.0996 

Q/(ΩD3):  0.1752 0.2628 0.3504 0.4380 0.5256 0.6132 

 

The dimensionless plot of Π1 versus Π2 is shown below. 

 

(b) The dimensionless chart above is valid for the new conditions, also. At flow rate 1.514 m3/s 
and Ω = 94.25 rad/s. Then evaluate Π2: 

Π2 =
Q
ΩD3 =

1.514
94.25 0.33( )3

= 0.447
 

This value is entered in the chart above, from which we see that the corresponding value of Π1 is 
about 5.4. For gasoline (Table A-3), ρ = 680 kg/m3. Then this new running condition with 
gasoline corresponds to 

Π2 = 0.1373 = Δp
ρΩ2D2 =

Δp
680 94.25( )2 0.33( )2

, solve for Δp = 90.32 kPa Ans. (b)
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C5.5 Does an automobile radio antenna vibrate in resonance due to vortex shedding? Consider 
an antenna of length L and diameter D. According to beam-vibration theory [e.g. Kelly [34], p. 
401], the first mode natural frequency of a solid circular cantilever beam is ωn = 
3.516[EI/(ρAL4)]1/2, where E is the modulus of elasticity, I is the area moment of inertia, ρ is the 
beam material density, and A is the beam cross-section area. (a) Show that ωn is proportional to 
the antenna radius R. (b) If the antenna is steel, with  L = 60 cm and D = 4 mm, estimate the 
natural vibration frequency, in Hz. (c) Compare with the shedding frequency if the car moves at 
65 mi/h. 
 
Solution: (a) From Fig. 2.13 for a circular cross-section, A = πR2 and I = πR4/4. Then the 
natural frequency is predicted to be: 

ωn = 3.516 EπR4/4
ρπR2L4 = 1.758 E

ρ
R
L2

= Const × RP Ans. (a)  

(b) For steel, E = 2.1E11 Pa and ρ = 7840 kg/m3. If L = 60 cm and D = 4 mm, then 

 
ωn = 1.758 2.1E11

7840
0.002
0.62 ≈ 51 rad

s
≈ 8 Hz Ans. (b)  

(c) For U = 65 mi/h = 29.1 m/s and sea-level air, check ReD = ρUD/µ = 1.2(29.1)(0.004)/ 
(0.000018) ≈ 7800. From Fig. 5.2b, read Strouhal number St ≈ 0.21. Then, 

 

ω shedD
2πU

=
ω shed (0.004)

2π (29.1)
≈ 0.21, or: ω shed ≈ 9600 rad

s
≈ 1500 Hz Ans. (c)  

Thus, for a typical antenna, the shedding frequency is far higher than the natural vibration 
frequency. 

 

 


