
CHAPTER 9 Vector Differential Calculus. Grad, Div, Curl

This chapter is independent of the previous two chapters (7 and 8).

Formulas for grad, div, and curl in curvilinear coordinates are placed for reference

in App. A3.4.

SECTION 9.1. Vectors in 2-Space and 3-Space, page 354

Purpose. We introduce vectors in 3-space given geometrically by (families of parallel)

directed segments or algebraically by ordered triples of real numbers, and we define

addition of vectors and scalar multiplication (multiplication of vectors by numbers).

Main Content, Important Concepts

Vector, norm (length), unit vector, components

Addition of vectors, scalar multiplication

Vector space , linear independence, basis

Comments on Content
Our discussions in the whole chapter will be independent of Chaps. 7 and 8, and there

will be no more need for writing vectors as columns and for distinguishing between row

and column vectors. Our notation is compatible with that in Chap. 7.

Engineers seem to like both notations

preferring the first for “short” components and the second in the case of longer expressions.

The student is supposed to understand that the whole vector algebra (and vector

calculus) has resulted from applications, with concepts that are practical, that is, they

are “made to measure” for standard needs and situations; thus, in this section, the

two algebraic operations resulted from forces (forming resultants and changing

magnitudes of forces); similarly in the next sections. The restriction to three

dimensions (as opposed to n dimensions in the previous two chapters) allows us to

“visualize” concepts, relations, and results and to give geometrical explanations and

interpretations.

On a higher level, the equivalence of the geometric and the algebraic approach

(Theorem 1) would require a consideration of how the various triples of numbers for

the various choices of coordinate systems must be related (in terms of coordinate

transformations) for a vector to have a norm and direction independent of the choice of

coordinate systems.

Teaching experience makes it advisable to cover the material in this first section rather

slowly and to assign relatively many problems, so that the student gets a feel for vectors

in (and ) and the interrelation between algebraic and geometric aspects.

Comments on Problems
Problems 1–10 illustrate components and length.

Operations on vectors (addition, scalar multiplication) in Probs. 11–20 are followed by

applications to forces and velocities in Probs. 31–37. This includes questions on equilibrium

and relative velocity.

R2R3

a � [a1, a2, a3] � a1i � a2 
j � a3k,

a � [a1, a2, a3]

R3

165
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SOLUTIONS TO PROBLEM SET 9.1, page 360

1.
2.
3.
4. . A line segment in space, of length , with

the origin as midpoint. The unit vector is

5. , poition vector of Q.

6.
7.
8. Position vector of 

9.
10.
11.
12. the same.

13. the same.

14. , the same.

15. the same.

16. the same.

17. , the same.

18.
22. 0, equilibrium

24.
26.
28. . Unit vectors will play a role in fixing (determining) directions.

30. with arbitrary 

32. ; nothing about direction. Application: suitable lengths of the

portions of an arm.

34.
36. Choose a coordinate system whose axes contain the mirrors. Let be

incident. Then the first reflection gives, say, , and the second

The reflected ray is parallel to the incoming ray, with the

direction reversed.

38. Team Project. (a) The idea is to write the position vector of the point of intersection

P in two ways and then to compare them, using that a and b are linearly independent

vectors. Thus

are the coefficients of a and those of b. Together, ,

expressing bisection.

(b) The idea is similar to that in part (a). It gives

l(a � b) � 1
2 a � � 

1
2 (b � a).

l � � � 1
2l � �l � 1 � �

l(a � b) � a � �(b � a).

w � [�u1, �u2] � �u.

v � [u1, �u2]

u � [u1, u2]

vB � vA � [�450>12, 450>12] � [�550>12, �550>12] � [100>12, 1000>12]

2 � ƒ p � q ƒ � 10

v3v � [�1, �1, v3]

[1>12, 1>12, 0]

v � �(p � q � u) � [�4, �9, 3]

[1, 1, 0]

[24, �24, 0], [�24, 24, 0]

[6, 9, 0]

[8, �1, �6],

[�25, 55, 15],

[�6, 30, 12]

[3, �1, 3], 

[5, 2, 3],

[8, 12, 0], [1>2, 3>4, 0], [�2,�3, 0]

Q: (0, 0, 0), ƒ v ƒ � 118

Q : [0, 0, �4]; ƒ v ƒ � 4

Q: (13.1, 0.8, �2.0), ƒ v ƒ � 1176.25

Q : [3/2, 0, 5/4]; ƒ v ƒ � 261/4

Q: (4, 2, 13), ƒ v ƒ � 1189

3, 27, �3, u � [3/5, 27>5, �3/5]

u � [�1>121, �4>121, �2>121].

14 � 64 � 16 � 184v � [�2, �8, �4]

11, �4, 3, 2146, [0.911, � 0.332, 0.248]

v � [1, 1, �1]; ƒ v ƒ � 13; ƒ u ƒ � [1>13, 1>13, �1>13]

3, 2, 0; 213, [3>213, 2>213,0]
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from a and from b, resulting in , thus giving a ratio

(c) Partition the parallelogram into four congruent parallelograms. Part (a) gives 1:1

for a small parallelogram, hence for the large parallelogram.

(d) has the solution ,

which gives by substitution and shows that the third median

OQ passes through P and OP equals of , dividing OQ in the

ratio 2:1, too.

(e) In the figure in the problem set, ; hence 

Also, , and for DC we get 

which shows that one pair of sides is parallel and of the same length. Similarly for

the other pair.

(f) Let a, b, c be edge vectors with a common initial point (see the figure below).

Then the four (space) diagonals have the midpoints

AG:

BH:

EC:

DF:

and these four position vectors are equal.

 b � 1
2 (a � c � b),

 c � 1
2 (a � b � c)

 a � 1
2 (b � c � a)

1
2 (a � b � c)

�1
2 (a � b),AB � 1

2 (a � b), CD � 1
2 (c � d) � �1

2 (a � b)

c � d � �(a � b).a � b � c � d � 0

ƒ v (Q) ƒ � 1
2 ƒ a � b ƒ

2
3 

v (P) �  13 (a � b)

l � � � 1
3 v (P) �  12 a � l(b � 1

2 a) � 1
2 b � �(a � 1

2 b)

1: (1 � 2)

A34 B : A14 B � 3:1.

l � 1
4 l � 1

2 �l � 1
2 � 1

2 �

Section 9.1. Parallelepiped in Team Project 38(f)

E

b

c

a

A

H

G
D

F

B

C

(g) Let be the vectors. Their angle is . The interior angle at each

vertex is . Put at the terminal point of , then at the terminal

point of , etc. Then the figure thus obtained is an n-sided regular polygon, because

the angle between two sides equals . Hence

.

(Of course, for even n the truth of the statement is immediately obvious.)

SECTION 9.2. Inner Product (Dot Product), page 361

Purpose. We define, explain, and apply a first kind of product of vectors, the dot product

, whose value is a scalar.

Main Content, Important Concepts

Definition (1)

Dot product in terms of components

a • b

v1 � v2 � Á � vn � 0

p � a � b
v2

v3v1v2b � p � (2p>n)

a � 2p>nv1, Á , vn
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Orthogonality

Length and angle between vectors in terms of dot products

Cauchy–Schwarz and triangle inequalities

Comment on Dot Product
This product is motivated by work done by a force (Example 2), by the calculation of

components of forces (Example 3), and by geometric applications such as those given in

Examples 5 and 6.

“Inner product” is more modern than “dot product” and is also used in more general

settings (see Sec. 7.9).

Comments on Text
Figure 178 shows geometrically why the inner product can be positive or negative or—

this is the most important case—zero, in which the vectors are called orthogonal. This

includes the case of two zero vectors in the definition, in which case the angle is no longer

defined.

Equations (6)–(8) concern relationships that also extend to more abstract setting, where

they turn out to be of basic importance; see [GenRef7].

Examples 2–6 in the text show some simple applications of inner products in

mechanics and geometry that motivate these products. Further applications will appear

as we proceed.

Comments on Problems
Problems 1–10 illustrate the various laws for inner products.

Problems 11–16 include a modest amount of theory.

Problems 17–40 add further applications of inner products in mechanics and geometry,

including a generalization of the concept of component in Probs. 36–40 that is quite

useful.

SOLUTIONS TO PROBLEM SET 9.2, page 367

1. 6, 6, 16

2.
3.
4.
5.

6. 0 by (8). The left side of (8) is the sum of the squares of the diagonals; the right side

equals the sum of the squares of the four sides of the parallelogram.

7.

8. 168, 168.

9. 12, 12

10.

12. implies nothing if and implies orthogonality of u and 

if .

16.

17.

18. 0; the vectors p and are orthogonal.v � [6, 7, 5]

[5, 3, 0] � [1, 3, 3] � 14

ƒ a � b ƒ
2 � (a � b) • (a � b) � ƒ a ƒ

2 � 2 ƒ a ƒ ƒ b ƒ � ƒ b ƒ
2 � ( ƒ a ƒ � ƒ b ƒ )

u � 0
v � wu � 0u • (v � w) � 0

11, �21

5, 227211

274, 225 � 222

246, 214 � 225

214, 425, 222

24, �120
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20. because p has the direction of 

.

22.

24. , hence

.

26.

28.

30. The distance of from the origin is 

(Hesse’s normal form). The plane parallel to P through A is

.

Its distance from the origin is 

.

This gives the answer .

32. Necessary and sufficient is the orthogonality of the normal vectors [3, 0, 1] and

. Hence

.

33.
34. Let the mirrors correspond to the coordinate planes. If the ray first hits

the yz-plane, then the xz-plane, and then the xy-plane, it will be reflected to

, ; hence the angle is , the reflected

ray will be parallel to the incident ray but will have the opposite direction.

Corner reflectors have been used in connection with missiles; their aperture

changes if the axis of the missile deviates from the tangent direction of the path.

See E. Kreyszig, On the theory of corner reflectors with unequal faces. Ohio State

University: Antenna Lab Report .

36.
38. . Note that the vectors have exactly opposite directions; this is

a case in which the component will have a minus sign. Also gives

the factor 2.

40. Nothing because appears in the numerator as well as in the denominator.

SECTION 9.3. Vector Product (Cross Product), page 368

Purpose. We define and explain a second kind of product of vectors, the cross product

, which is a vector perpendicular to both given vectors (or the zero vector in some

cases).

Main Content, Important Concepts

Definition of cross product, its components (2), (2**)

Right- and left-handed coordinate systems

a � b

a • bƒ b ƒ

ƒ a ƒ > ƒ b ƒ � 168>17

�34>117 � �2117

6>114

601>19

180°[�v1, �v2, �v3][�v1, �v2, v3][�v1, v2, v3],

 [v1, v2, v3]

�[4
5, �3

5]

[3, 0, 1] • [8, �1, c] � 0,  c � �24

[8, �1, c]

2.714 � 1.508 � 1.206

5>111 � 1.508

3x � y � z � 3 � 1 � 1 � 0 � 1 � 2 � 5

9> ƒ a ƒ � 9>111 � 2.714

P: 3x � y � z � 9

(BA, BC) � 35.26°, g3 � arccos (CA, CB) � 90°gB � arccos

gA � arccos (AB, AC) � arccos (3>(3 � 13)) � 54.74°,

ƒ c ƒ
2 � ƒ a � b ƒ

2 � (a � b) • (a � b) � ƒ a ƒ
2 � ƒ b ƒ

2 � 2 ƒ a ƒ ƒ b ƒ  cos g

g � arccos (16>19 � 29) � 0.1389 � 7.96°

a � c � [2, 1, 2], b � c � [4, 2, 3]

arccos (5>114 � 5) � arccos 0.9449 � 0.3335 � 19.1°

[2, �1, �1]

AB � v �[6, �3, �3] • [2, �1, �1] � 18 � ƒ p ƒ ƒ v ƒ
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Properties (anticommutative, not associative)

Scalar triple product

Prerequisites. Elementary use of second- and third-order determinants (see Sec. 7.6)

Comment on Motivations
Cross products were suggested by the observation that, in certain applications, one

associates with two given vectors a third vector perpendicular to the given vectors

(illustrations in Examples 4–6). Scalar triple products can be motivated by volumes and

linear independence (Theorem 2 and Example 6).

Comments on Problems
Problems 1–10 should help in obtaining an intuitive understanding of the cross product

and give further motivation of this concept by applications.

Problems 11–23 compare various products, with emphasis on those of three factors.

Team Project 24 concerns standard formulas needed in working with dot and cross

products and their combination.

Problems 25–35 show some further applications in mechanics and geometry, to

emphasize further that the definitions of these products are motivated by applications.

SOLUTIONS TO PROBLEM SET 9.3, page 374

2. , thus has the direction of a or .

4. The cross product is

Its length is , which equals the right side of (12),

.

Using the definition of the length of a vector product and the given hint, we obtain

(12) by taking the square roots of

.

6. Instead of you now have , hence doubles.

8. We obtain

so that the speed is 

11.

12.

13. [1, 1, �2], [�1, �1, 2]

[�126, �78, 60], [126, 78, �60], 30, 30

[0, 0, �1], [0, 0, 1], �8

1600.

v � 4 i j  k

10>12 10>12  0

4 2 �2

4 � [�1012, 1012, �1012]

ƒ v ƒ2vd � 2 ƒ w � r ƒvd

ƒ a � b ƒ
2 � ƒ a ƒ

2
ƒ b ƒ

2 sin2 g � ƒ a ƒ
2

ƒ b ƒ
2(1 � cos2 g) � (a • a)(b • b) � (a • b)2

229 � 5 � 72 � 1145 � 49

ƒ v ƒ � 196

 � [8, �4, �4].

 v � a � b � 4  i j k

3 4 2

1 0 2

 4 � (8 � 0)i � (2 � 6)j � (0 � 4)k

�ab � c or b � ca � (b � c) � 0
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14. 0 because of anticommutivativity

15. 0

16. The first expression gives

The second expression looks totally different but, of course, gives the same value:

17.
18. . The student should note and understand why both product vectors lie in

the plane of a and b, why neither of the zero, and why they are the same. This should

become clear by drawing little sketches of the factors and products.

19.

20. Formula (14) shows that the two expressions are equal, namely, equal to 

The intermediate calculation of the second expression is

21.
22. 8, 5

23. 0, 0, 13

24. Team Project. To prove (13), we choose a right-handed Cartesian coordinate system

such that the x-axis has the direction of d and the xy-plane contains c. Then the vectors

in (13) are of the form

Hence by (2**),

The “determinant” on the right equals . Also,

This proves (13) for our special coordinate system. Now the length and direction of

a vector and a vector product, and the value of an inner product, are independent of

the choice of the coordinates. Furthermore, the representation of in terms

of i, j, k will be the same for right-handed and left-handed systems, because of the

double cross multiplication. Hence, (13) holds in any Cartesian coordinate system,

and the proof is complete.

Equation (14) follows from (13) with b replaced by .

To prove (15), we note that equals

by the definition of the triple product, as well as by (13)

(take the dot product by a).

(a • c)(b • d) � (a • d)(b • c)

(a b [c � d]) � (a � b) • (c � d)

a • [b � (c � d)]

a � b

b � (c � d) 

 � [�b2c2d1, b1d1c2, 0].

 (b • d)c � (b • c)d � b1d1[c1, c2, 0] � (b1c1 � b2c2)[d1, 0, 0]

[�b2c2d1, b1c2d1, 0]

c � d � 4 i j k

c1 c2 0

d1 0 0

4 � �c2d1k,  b � (c � d) � 4 i j k

b1 b2 b3

0 0 �c2d1

4 .
b � [b1, b2, b3],  c � [c1, c2, 0],  d � [d1, 0, 0].

[�24, �16, 16], 8217 � 32.985, 32.985

(�5)[2, �4, �1] � (1)[3, �1, 5] � [�10, 20, 5]�[3, �1, 5] � [�13, 21, 0].

[�13, 21, 0].

�1, 1

[�2, �1, 0]

[�8, 21, 9], [30, 20, 89]

[�2, 3, 0] � [�21, �13, 10] � 3.

[�3, �2, 2] � [3, �1, 5] � 3.
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The last formula, (16), follows from familiar rules of interchanging the rows of a

determinant.

26.

28. The midpoints are

Midpoint of ,

Midpoint of ,

Midpoint of ,

Midpoint of .

The cross product of adjacent sides of Q is

Its length 6.25 is the area of Q.

30. A normal vector is

Hence the plane is represented by

with c obtained by substituting the coordinates of C (or of A or B)

32. 10

34. Edge vectors are

The mixed triple product of these vectors is (or +90). This gives the answer 15.

SECTION 9.4. Vector and Scalar Functions and Their Fields. 

Vector Calculus: Derivatives, page 375

Purpose. To get started on vector differential calculus, we discuss vector functions and

their continuity and differentiability.

Differentiation of scalar and vector functions will be needed throughout the rest of the

chapter for developing the differential geometry of curves with application to mechanics

(Sec. 9.5) and the three operators, gradient, with application to directional derivatives

(Sec. 9.7), divergence (Sec. 9.8), and curl (Sec. 9.3).

The form of these operators in curvilinear coordinates is given in App. A3.4.

Main Content, Important Concepts

Vector and scalar functions and fields

Continuity, derivative of vector functions (9), (10)

�90

 [2 � 1, 2 � 3, 8 � 6].

 [8 � 1, 8 � 3, 9 � 6],

 [3 � 1, 7 � 3, 12 � 6],

c � �9 � 8 � 18 � 4 � 0.

N • r � 13.5x � 9y � 18z � c

 � [13.5, �9, 18].

 N � AB � AC � [3, 0, �2.25] � [�1, 6, 3.75]

 � [0, 0, �6.25].

 M1M4 � M1M2 � [0.5, 2, 0] � [3, 0.5, 0]

DAM4: (3, 2, 0)

CDM3: (6, 2.5, 0)

BCM2: (6.5, 0.5, 0)

ABM1: (3.5, 0, 0)

m � [2, 3, 2] � [1, 0, 3] � [9, �4, �3]; m � 1106 � 10.3
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Differentiation of dot, cross, and triple products, (11)–(13)

Partial derivatives

Comment on Content
This parallels calculus of functions of one variable and can be surveyed quickly.

Further Comments on Text
A vector field (or scalar field) may be given along a straight line, along a curve (Fig. 195)

or a surface (Fig. 196) or in a three-dimensional region of space. In practice, these are the

most important cases for the engineer.

Important applications are scalar fields in space (Example 1), velocity fields of rotations

(Example 2), and the gravitational field of masses (Example 3).

Convergence, continuity, and differentiability of vector functions are defined in

connection with (4), (8), and (9), and these concepts relating to vector functions can be

expressed in terms of components. In particular, formula (10) states that a vector function

can be differentiated componentwise.

Formulas (11)–(13) are immediate consequences of familiar differentiation rules.

An extension of this to partial differentiation is illustrated in Example 5.

Comments on Problems
Although there is practically not much difference in working in the plane and in space,

we begin in Probs. 1–8 with the former case, where visualization and graphing (sketching)

is much simpler.

Extension to space follows in Probs. 9–14.

Those first problems concern scalar fields, which are simpler than vector fields, which

may technically be regarded as triples of (coordinate-dependent!) scalar fields (which

conceptually they are not!).
The set ends with a few problems (22–25) in differential calculus. Here the student

should consult and review material from his or her calculus text.

SOLUTIONS TO PROBLEM SET 9.4, page 380

2. Hyperbolas with the coordinate axes as asymptotes.

4. Straight lines through the origin (planes through the z-axis) .

6. , hence . Division by gives

, thus .

These are circles with center at and radius , so that they all pass

through the origin.

7. Ellipses.

8. CAS Project. A CAS can graphically handle these more complicated functions,

whereas the paper-and-pencil method is relatively limited. This is the point of this

project.

Note that all these functions occur in connection with Laplace’s equation, so that

they are real or imaginary parts of complex analytic functions.

9. Parallel planes

10. Ellipsoids of revolution. The ellipsoid

intersects the axes at , , and c, respectively.c>2c>2

4x2 � 4y2 � z2 � c2

1>(4 ƒ c ƒ )(1>(4c), 0)

(x � 1
4c)2 � y2 � 1

16c2
x
2c � x2 � y2

c (�  0)x � 2c(x2 � y2)x>(2x2 � 2y2) � c

y>x � const

T � xy � const
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11. Elliptic cyclinders

12. Congruent circular cones with apex at on the z-axis.

14. Congruent parabolic cylinders with vertical generators and the xz-plane as plane of

symmetry.

16. This could be the velocity field of a counterclockwise rotation about the origin. Indeed,

at a point the vector v is perpendicular to the segment from the origin to 

Also, , that is, the speed is proportional to the distance of the point

from the origin (the axis of rotation in space), as it should be for such a rotation.

18. v has radial direction away from the origin.

20. Clockwise rotation; compare with Prob. 16.

22. . The second derivative is

This problem has to do with a helix, as we shall see in the next section.

24. . Similarly, for the second

given function,

and

.

SECTION 9.5. Curves. Arc Length. Curvature. Torsion, page 381

Purpose. Discussion of space curves as an application of vector functions of one variable,

the use of curves as paths in mechanics (and as paths of integration of line integrals in

Chapter 10). Role of parametric representations, interpretation of derivatives in mechanics,

completion of the discussion of the foundations of differential–geometric curve theory.

Main Content, Important Concepts

Parametric representation (1)

Orientation of a curve

Circle, ellipse, straight line, helix

Tangent vector (7), unit tangent vector (8), tangent (9)

Length (10), arc length (11)

Arc length as parameter [cf. (14)]

Velocity, acceleration (16)–(19)

Centripetal acceleration, Coriolis acceleration

Curvature, torsion, Frenet formulas (Prob. 50)

Short Courses. This section can be omitted.

Comments on Text
This long section gives an overview of the differential geometry of curves in space, as

needed in mechanics, where velocity and tangential and normal acceleration are basic; see

(17), (18), and ( ).18*

v2y � [cos x sinh y, �sin x cosh y]

v2 
x � [�sin x cosh y, �cos x sinh y]

y1x � [ex cos y, ex sin y], v1y � [�ex sin y, ex cos y]

rs � [�12 cos 2t, �12 sin 2t, 0].

rr � [�6 sin 2t, 6 cos 2t, 4]

ƒ v ƒ � 2x2 � y2
(x, y).(x, y)

z � cz � 2x2 � y2 � c
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The discussion begins with parametric representations (Examples 1–4), tangents

(Example 5), and arc length (for the helix in Example 6).

Then the section turns to mechanics, discussing centripetal and centrifugal forces

(Example 7) and Coriolis acceleration appearing in the superposition of rotations, as for

the motion of missiles (Example 8 and Fig. 211).

We finally discuss curvature and torision and related concepts shown in Fig. 212; since

this is of minor interest to the engineer, we leave this last part of the section optional. The

culmination of this are the Frenet formulas (Probs. 54 and 55), which imply that and

, if sufficiently differentiable, determine a curve uniquely, except for its position in space.

Comments on Problems
These follow the train of thoughts in the text, discussing first parametric representations

in detail (Probs. 1–23). Here, Prob. 23 shows a list of classical curves the engineer may

need from time to time.

Problems 24–28 concern the representations of tangents.

Problems 29–32 involve only integrals that are simple, which is generally not the case

in connection with lengths of curves.

Problems 35–46 concern mechanics.

The remaining Probs. 47–55 correspond to the optional parts of the text regarding

curvature and torsion.

SOLUTIONS TO PROBLEM SET 9.5, page 390

1. Circle, center (0, 2), radius 4.

2. Straight line through in the direction of the vector .

3. Cubic parabola 

4. Circle of radius 5 and center in the plane , which is parallel to the

yz-plane.

5. Ellipse

6. This is an ellipse with center and semi-axes 3 and 2, oriented clockwise because

of the minus sign. Because of the factor the whole curve is obtained if we let t
vary from 0 to .

7. Helix

8. gives a hyperbola in the plane .

9. A “Lissajous curve”

10. Hyperbola in the plane .

11.

12. The yz-plane is . The center has the distance 5 from . Hence a

representation is

.

13.
14. A vector from to is . Hence a representation is

.

15.
16. Ellipse . Since the plane makes an angle of with the 

xy-plane, the semi-axes of the ellipse are (in the y-direction) and 1 (in the 

x-direction); indeed, the apex at has distance from the origin.12(0, 1, 1)

12

45°r � [cos t, sin t, sin t]
r � [t, 2t � 1, 3t]

r � [1, 1, 1] � bt � [1 � 3t, 1 � t, 1 � t]

b � [3, �1, 1](4, 0, 2)(1, 1, 1)

r � [3 � t, 1, 2 � 4t]

r � [0, 4 � 5 cos t, 0 � 5 sin t]

(0, 3)(4, 0)x � 0

r � [1 � 22 cos t, �1 � 22 sin t, 2]

y � 2xz � 1

z � 2x2 � y2 � cosh2 t � sinh2 t � 1

2p>p � 2

p
(a, b)

x � �2(2, �1)

x � 0, z � 2t 3

[1, 3, �5](a, b, c)

t(s)

�(s)

t�
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17.

18.

19.

20. This linear system of two equations in three unknowns has the solution

where remains arbitrary. Hence this may be regarded as a parametric repre-

sentation of the straight line of intersection of the two planes given by the two equations.

Obviously, this line is determined by a point through which it passes and a direction,

given by a vector v. As a point we can choose the intersection of the line with the

plane (the xy-plane), for which the given equations, with , yield

and have the solution . Hence is a point on the line of

intersection, call it L. The direction of the latter is given by the vector product for the

two normal vectors of the given planes, that is

.

Hence a parametric representation of the straight line of intersection of the two planes is

24. P corresponds to ; indeed, . Differentation gives

and at P, .

The unit tangent vector in the direction of is

and at P, 

This gives the representation of the tangent of C at P in the form

.

26. Differentiation gives a tangent vector

.

P corresponds to the parametric value . The value of at P is .

A representation of the tangent at P is

.

27.
28. A tangent vector is

.

The corresponding unit tangent vector is

.u � (1 � 4t 2 � 9t 4)�1>2[1, 2t, 3t 2]

rr(t) � [1, 2t, 3t 2]

q(w) � [4 � w, 1 � w>4, 0].

q (w) � [1 � 0, 0 � w, 18p � 9w]

[0, 1, 9]rrt � 2p

rr(t) � [�sin t, cos t, 9]

q (w) � r (2) � wrr(2) � [2 � w, 1 � w, 2]

ur(2) � [18>4, 18>4, 0].ur(t) � [2>24 � t 2, t>24 � t 2, 0]

rr(t)
rr(2) � [1, 1, 0]rr(t) � [1, t>2, 0]

r(2) � [2, 1, 2]t � 2

 � [7
5 � 5t, 45 � 5t, 5t].

 r � a � t v � a � [�5t, 5t, 5t]

v � 4  i j k

2 �1 3

1 2 �1

 4 � [�5, 5, 5]

a � [7
5 , 45 , 0]x � 7

5 , y � 4
5 

2x � y � 2,  x � 2y � 3

z � 0z � 0

z � t

r � [7
5 � t, 45 � t, t]

r � [cosh t, 1

12 sinh (t), �2].

r � [5 cos t, 5 sin t, 2t].

r � [13cos t, sin t, sin t]
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P corresponds to . Hence at P we have

and

.

A representation of the tangent at P is

.

29.
30. The initial and terminal point of the arc correspond to and . Differentiation

gives a tangent vector

.

The integrand needed is . Hence the length is . 

31.

32. . Taking the dot product and applying trigono-

metric simplification gives

From this we obtain as the length in the first quadrant

Answer: 6a

34. We obtain

For the cardioid.

so that

35.
36. a nonaccelerated motion (uniform

motion, motion of constant speed).

v � rr � [2, 4, 0], ƒ v � 225, a � [0, 0, 0],

v � rr � [1, 8t, 0], ƒ v � 21 � 64t 2, a � [0, 8, 0]

l � 2a�
2p

0

sin 
1

2
 u du � 8a.

 � 4a2 sin2 12 u

 � 2a2(1 � cos u)

 r2 � rr2 � a2(1 � cos u)2 � a2 sin2 u

 � (rr2 � r2) du2.

 � dr2 � r2 du2
 � (dr cos u � r sin u du)2 � (dr sin u � r cos u du)2

 ds2 � dx2 � dy2

l �
3

2
 a�

p>2

0

sin 2t dt � � 

3a
4

 (cos p � cos 0) �
3a
2

 .

 �
9a2

4
 sin2 2t.

 � 9a2 cos2 t sin2 t

 rr • rr � 9a2 cos4 t sin2 t � 9a2 sin4 t cos2 t

rr � [�3a cos2 t sin t, 3a sin2 t cos t]

2rr � rr � a, l � ap

l � 2p1412rr • rr � 141

rr � [�4 sin t, 4 cos t, 5]

t � 2pt � 0

2rr � rr � cosh t, l � sinh(2) � 3.627.

q (w) � [1 � w, 1 � 2w, 1 � 3w]

u � 14�1>2[1, 2, 3]

rr � [1, 2, 3]

t � 1
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38.
. Hence the tangential acceleration is

and has the magnitude , where

39.

40. The velocity is

.

From this we obtain the square of the speed

Performing the squares and simplifying gives

Hence

We use . By straightforward simplification (four terms cancel), 

Hence gives

41.

42. The velocity vector is

.

Hence the square of the speed is

.ƒ v ƒ
2 � c2(t 2 � 2)

v � [c cos t � ct sin t, c sin t � ct cos t, c]

a � [�sin t, �cos t, �4 cos 2t], atan � 4 sin 4t
�3 � 2 cos 4t v

v � [cos t, �sin t, �2 sin 2t], ƒ v ƒ
2 �  3 � 2 cos 4t

 anorm � a � atan.

 atan �
12 sin 3t

16 sin2 (3t>2)
 v

(18*)

 � 12 sin 3t.

 a • v � 12(cos t sin 2t � sin t cos 2t)

(18*)

 a � [�2 cos t � 4 cos 2t, �2 sin t � 4 sin 2t].

 ƒ v ƒ � 4 sin 
3t
2

 .

 � 16 sin2 
3t
2

 .

 � 8(1 � cos 3t)

 ƒ v ƒ
2 � 8(1 � sin t sin 2t � cos t cos 2t)

ƒ v ƒ
2 � v • v � (�2 sin t � 2 sin 2t)2 � (2 cos t � 2 cos 2t)2.

v � [�2 sin t � 2 sin 2t, 2 cos t � 2 cos 2t]

a � [�4 sin 2t, �cos t], atan � 8 sin 4t � sin 2t
�4 cos 4t � cos 2t � 5 v

v � [2 cos 2t, �sin t], ƒ v ƒ
2 � 8 cos 4t � 2 cos 2t � 10

ƒ atan ƒ
2 �

9 sin2 t cos2 t

sin2 t � 4 cos2 t
 .

ƒ atan ƒ

atan �
�3 sin t cos t

sin2 t � 4 cos2 t
 [�sin t, 2 cos t, 0]

a � [�cos t, �2 sin t, 0]

v � rr � [�sin t, 2 cos t, 0], ƒ v ƒ � (sin2 t � 4 cos2 t)1>2,
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Another differentiation gives the acceleration

.

The tangential acceleration is

and the normal acceleration is

.

This is a spiral on a cone.

44.
, which is only , where g is the acceleration

due to gravity at the Earth’s surface.

46.

.

Here we used 

48. We denote derivatives with respect to t by primes. In (22), 

[See (12).]

Thus in (22), 

where

Hence

Taking square roots, we get .

50.
Now ; hence . Inserting this into the

triple product (the determinant), we can simplify the determinant by familiar rules

and let the last term in disappear. Pulling out from both p and , we obtain

the second formula in .

52. From we obtain

rr � [�a sin t, a cos t, c],  rr • rr � a2 � c2 � K 2.

r (t) � [a cos t, a sin t, ct]

(23**)

pr1>�pr

pr � (1>�)rt � (1>�)rrsu � rr, p � (1>�)rs
�(u p pr).t � �p • (u � p)r � �p • (ur � p � u � pr) � 0 � (p u pr) �

(22*)

 � (rs • rs)(rr • rr)�2 � (rs • rr)2(rr • rr)�3.

 
du
ds

•
du
ds

� (rs • rs)(rr • rr)�2 � 2(rs • rr)2(rr • rr)�3 � (rr • rr)�3(rs • rr)2

 
du
ds

� rs(rr • rr)�1 � rr(rs • rr)(rr • rr)�2

 � �(rs • rr)(rr • rr)�2.

 
d2t
ds2 �

d
dt

 a dt
ds
b dt

ds
� � 

1

2
 (rr • rr)�3>2 2(rs • rr)(rr • rr)�1>2

du
ds

� rsa dt
ds
b

2

� rr d
2t

ds2 � rs(rr • rr)�1 � rr d
2t

ds2

u �
dr
ds

� rr dt
ds

 ,  dt
ds

�
1

sr � (rr • rr)�1>2.

ƒ v ƒ � vR.

g � ƒ a ƒ � v2R � ƒ v ƒ
2>R � 17.41 [mi>min2] � 25.53 [ft>sec2] � 7.78 [m>sec2]

R � 3960 � 450 � 4410 [mi], 2pR � 100 ƒ v ƒ , ƒ v ƒ � 277.1 mi>min,

2.8 # 10�4 gR � ƒ v ƒ
2>R � 0.0027 [m>sec2]

v2>ƒ a ƒ �R � 3.85 # 108 m, ƒ v ƒ � 2pR>(2.36 # 106) � 1025 [m>sec], ƒ v ƒ � vR,

anorm � a � atan

atan �
ct

t 2 � 2
 [cos t � t sin t, sin t � t cos t, 1]

a � [�2c sin t � ct cos t, 2c cos t � ct sin t, 0]
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Hence, by integration, . Consequently, . This gives the indicated

representation of the helix with arc length s as parameter. Denoting derivatives with

respect to s also by primes, we obtain

Positive c gives a right-handed helix and positive torsion; negative c gives a left-

handed helix and negative torsion.

54. implies the first formula, . The third Frenet formula was given

in the text before (23). To obtain the second Frenet formula, use

In differential geometry (see [GenRef8] in App. 1) it is shown that the whole

differential–geometric theory of curves can be obtained from the Frenet formulas,

whose solution shows that the natural equations determine a

curve uniquely, except for its position in space.

SECTION 9.6. Calculus Review: Functions of Several Variables. 

Optional, page 392

Purpose. To give students a handy reference and some help on material known from

calculus that they will need in their further work.

SECTION 9.7. Gradient of a Scalar Field. Directional Derivative, page 395

Purpose. To discuss gradients and their role in connection with directional derivatives,

surface normals, and the generation of vector fields from scalar fields (potentials).

Main Content, Important Concepts

Gradient, nabla operator

� � �(s), t � t(s)

pr � (b � u)r � br � u � b � ur � �tp � u � b � �p � �tb � �u.

ur � �ppr � (1>�)ur

t (s) � �p (s) • br(s) �
c

K 2
�

c

a2 � c2
 .

br(s) � B 

c
K 2 cos 

s
K

 , c
K 2 sin 

s
K

 , 0R
b(s) � u(s) � p(s) � B c

K
 sin 

s
K

 , � 

c
K

 cos 
s
K

 , a
K
R

p (s) �
1

� (s)
 rs(s) � B�cos 

s
K

 , �sin 
s
K

 , 0R
�(s) � ƒ rs ƒ � 2rs • rs �

a

K 2
�

a

a2 � c2

rs(s) � B� 

a
K 2 cos 

s
K

 , � 

a
K 2 sin 

s
K

 , 0R
u(s) � rr(s) � B� 

a
K

 sin 
s
K

 , a
K

 cos 
s
K

 , c
K
R

K 2 � a2 � c2r(s) � Ba cos 
s
K

 , a sin 
s
K

 , cs
K
R,

t � s>Ks � Kt
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Directional derivative, maximum increase, surface normal

Vector fields as gradients of potentials

Laplace’s equation

Comments on Content
This is probably the first section in which one should no longer rely on knowledge from

calculus, although relatively elementary calculus books usually include a passage on gradients.

Potentials are important; they will occur at a number of places in our further work.

Further Comments on Text
Figure 215 illustrates the directional derivatives geometrically. Note that s can be positive,

zero, or negative.

Theorem 1 is needed because the gradient in (1) involves coordinates.

Figure 216 illustrates a major geometric application of the gradient.

The notion of potential is basic, and Theorem 3 states one of the most important examples.

Coulomb’s law (12) is of the same form as Newton’s law of graviation in (8); thus the

two are governed by the same theory.

Comments on Problems
Problems 1–17 require specific calculations and show some general foumulas for the

gradient and the Laplacian.

Problems 18–23 and 43–45 concern vector fields and their potentials.

Problems 30–35 show applications to curve and surface theory.

Directional derivatives are considered in Probs. 36–42.

Hence the problem set reflects the many-sided aspects of the gradient and its applications.

SOLUTIONS TO PROBLEM SET 9.7, page 402

1.
2.
3.

4.

5.

6.

8. Applying the product rule to each component of and collecting terms, the

formula follows, 

.

10. Apply the product rule twice to each of the three terms of , obtaining

and so on, and reorder and collect terms into three sums that make up the right side

of the formula.

11.

12. , so that the gradient at

is pointing in the negative y-direction.

13.

14. . Its value at P is [�0.0015, 0, �0.0020].v � grad f � �(x2 � y2 � z2)�3>2[x, y, z]

(x2 � y2)�1 [2x, 2y], [2>5, 1>5]

(1, 1)

v � 	f � c� 

x2 � y2

(x2 � y2)2
, �

2xy

(x2 � y2)2 d , v(1, 1) � [0, �1
2]

[y, x], [�4, 3]

( fg)xx � fxxg � 2fxgx � fgxx

	2

[( fg)x, ( fg)y, ( fg)z] � [ fxg, fyg, fz 
g] � [ fgx, fgy, fgz]

	( fg)

(x2 � y2)�2[�4xy2, 4yx2]

[5x4, 5y4]

v � grad f � [2x � 4, 8 y � 16]

[1>y, �x>y2]

bfv � grad f � [4x, 10y]

[4y � 2, 4x � 4]
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15.
16. has solutions precisely for the points on the

three principal axes of the ellipsoids, that is, for P on the coordinate axes.

17. For P on the and axes.

18. . The value at P is . The curves are

hyperbolas with asymptotes .

20. . At (1, 1) this equals 

We mention that this is the real part of the complex analytic function ,

where (we write since z is used as coordinate in space), giving the flow

around the circle , that is, a cylinder in space with axis intersecting the

xy-plane at the origin. This flow and extensions of it will be discussed in the chapter

on complex analysis and potential theory (in Sec. 18.4).

22. The x-component of must be zero; thus

. Then . We must have to obtain

(upward flow), hence .

24. . At P this gives .

26. at P is .

28. . Hence a vector in the direction of steepest

ascent is .

30.

32. . Planes have constant normal direction.

34. . The intersection of this surface with

planes parallel to the coordinate planes are curves each of which is between a circle

and a square of portions of four tangents to that circle whose center is the origin of

the plane of the circle.

36. . From we thus obtain the answer

.

38.

40. at 

equals .

42. 0 without calculation because on the axes an ellipsoid has a tangent plane

perpendicular to the axis, whereas a lies in that plane at the x-axis, so that and a
are perpendicular to each other.

44.

SECTION 9.8. Divergence of a Vector Field, page 402

Purpose. To explain the divergence (the second of the three concepts grad, div, curl) and

its physical meaning in fluid flows.

Main Content, Important Concepts

Divergence of a vector field

Continuity equations (5), (6)

Incompressibility condition (7)

f � yex � 1
3 z3

	f
f � const

12>3
(3, 0)(	f ) • a> ƒ a ƒ � (x2 � y2)�1[2x,  2y] • [1, �1] � (x2 � y2]�1(2x � 2y)>12

Da f � [1, 1, 3] • [4, 4, �2]>111 � 2>111

[�1, �3] • [12, 12]>110 � �48>110

(5*)	f � [4x, 4y]

	f � [4x3, 4y3, 4z3], 	f ( p) � [32, 4, 256]

[a, b, c]

	f � [8x,  18y], 	f ( p) � [16, 12114]

[�1, �2.25]

�	z � [�2x, �18y], 	z(P) � [�8, �18]

[�4, 2, �16]�	T � [�2x, �2y, �8z]

[�15.0, 7.2]�	T � [�6x, 4y]

y � �1
2 p � 2np�ex sin y 
 0

sin y � �1sin y � �1y � �(2n � 1)p>2
v � 	f � [ex cos y, �ex sin y]

x2 � y2 � 1

zz � x � iy
z � 1>z

[1, �0.5].v � 	f � c1 �
1

x2 � y2
�

2x2

(x2 � y2)2
 , � 

2xy

(x2 � y2)2 d
y � �(x � 3)

f � const[�8, �10]v � 	f � [2x � 6, �2y]

y�x�

v � 	f � [50x, 18y, 32z] � �k[x, y, z]

[4x, 8y, 18z], [�4, 16, �72]
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Comment on Content
The interpretation of the divergence in Example 2 depends essentially on our assumption

that there are no sources or sinks in the box. From our calculations it becomes plausible

that, in the case of sources or sinks, the divergence may be related to the net flow across the

boundary surfaces of the box. To confirm this and to make it precise we need integrals;

we shall do this in Sec. 10.8 (in connection with Gauss’s divergence theorem).

Moving div and curl to Chap. 10?
Experimentation has shown that this would perhaps not be a good idea, simply because

it would combine two substantial difficulties, that of understanding div and curl themselves

and that of understanding the nature and role of the two basic integral theorems by Gauss

and Stokes, in which div and curl play the key role.

Comments on Problems
Project 9 concerns some standard formulas useful in working with the divergence.

CAS Experiment should help the student in gaining an intuitive understanding of the

divergence.

Formula (3) is basic, as the problems should further emphasize.

SOLUTIONS TO PROBLEM SET 9.8, page 405

1.
2.
3. 0, after simplification, solenoidal.

4. 0. Hence this field is solenoidal, regardless of the special form of .

5.
6. 0, hence the vector field is solenoidal.

7.

8. Of course, there are many ways of satisfying the conditions. For

instance, (a) , (b) . The point of the problem is that the student

gets used to the definition of the divergence and recognizes that div v can have

different values and also the sign can differ in different regions of space.

10. (a) Parallel flow.

(b) Outflow on the left and right, no flow across the other sides; hence div .

(c) Outflow left and right, inflow from above and below, balance perhaps zero; by

calculation, . Etc.

12. . Hence , and

.

By integration, , and . Hence

and .

This shows that the cube in Prob. 9 is now transformed into the rectangular parallelepiped

bounded by , whose volume is e.

14. No. concerns components, whereas div u and div v are sums of contributions

from all three components.

u � v
x � 0, x � e, y � 0, y � 1, z � 0, z � 1

r(1) � c1ei � c2 
j � c3kr(0) � c1i � c2 

j � c3k

r � xi � yj � zkx � c1et, y � c2, z � c3

dx
dt

� x,  
dy

dt
� 0,  

dz

dt
� 0

div v � 1v � v1i � v2 
j � v3k �

dx
dt

 i �
dy

dt
 j �

dz

dt
 k � xi

div v � 0

v 
 0

v3 � �z � 1
3 z3v3 � 0

div v � 2 �
0v3

0z
 .

�2ey cos xz

6xyz, 36

v1, v2, v3

cos (x2yz) x2z � sin (xy2z) xy2, 22>8
4x � 6y � 16z, 15
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16. The gradient is

.

Hence (3) gives

The work in the direct calculation is practically the same. From Probs. 15–20 the

student should understand that relation (3) is quite natural.

18. The gradient is

.

Application of the definition of the divergence now gives

which simplifies to .

20. The gradient is

, 

so that for the Laplacian we obtain

whereas for we have .

SECTION 9.9. Curl of a Vector Field, page 406

Purpose. We introduce the curl of a vector field (the last of the three concepts grad, div,

curl) and interpret it in connection with rotations (Example 2 and Theorem 1). A main

application of the curl follows in Sec. 10.9 in Stokes’s integral theorem.

Experience has shown that it is generally didactically preferable to defer Stokes’s

theorem to a later section and first to give the student a feel for the curl independent of

an integral theorem.

Main Content

Definition of the curl (1)

Curl and rotations (Theorem 1)

Gradient fields are irrotational (Theorem 2)

Irrotational fields, conservative fields

Comments on Text
The curl is suggested by rotations; see Theorem 1.

We have now reached the point at which we can state basic relations among the three

operators grad, div, curl (Theorem 2).

Since Definition 1 involves coordinates, we have to prove that curl v is a vector; see

Theorem 3.

Comments on Problems
Calculations (Probs. 4–8) are followed by typical applications in fluid mechanics

(Probs. 9–13).

As in the previous two sections, we finally present general formulas, this time for div

and curl, and request some corresponding calculations (Probs. 14–20).

	2f
~

� 0f
~

� e2x cos 2y

div (	f ) � 4e2x cosh 2y � 4e2x cosh 2y � 8e2x cosh 2y,

	f � [2e2x cosh 2y, 2e2x sinh 2y]

�(x2 � y2)�1>2

	2f � �(x2 � y2)�1>2 � x2(x2 � y2)�3>2 � (x2 � y2)�1>2 � y2(x2 � y2)�3>2

	f � [�x(x2 � y2)�1>2, �y(x2 � y2)�1>2, 1]

div (	f ) � exyz( y2z2 � z2x2 � x2y2).

	f � exyz [ yz, zx, xy]
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SOLUTIONS TO PROBLEM SET 9.9, page 408

2. (a) Nothing, in general. (b) curl v is parallel to the x-axis or 0.

4.

5.

6. . Recall from Theorem 3 in Sec. 9.7 with and 

that the present vector field is a gradient field, so that we must have curl .

8.

10. , compressible. Streamlines are obtained

as follows. By the definition of the velocity vector and its present given form, 

.

Equating the first components gives

By integration,

Hence

From this and the second components, 

By integration, 

Equating the third components and integrating, we finally have .

12. , incompressible. Streamlines are helices obtained

as follows. As in Prob. 10 we first have

.

In components, 

From the first two components, by differentiation and substitution, 

A general solution is

.

From this and the first components, 

From the third component, 

z � pt � c3.

y � �xr � a sin t � b cos t.

x � a cos t � b sin t

xs � �yr � �x.

xr � �y,  yr � x,  zr � p.

v � [xr, yr, zr] � [�y, x, p]

curl v � [0, 0, 2]. Also div v � 0

z � c3

y � ln (t � c1) � c2.

yr � cosec x �
1

1 � c1
.

x � arcsin (t � c1).

sin x � t � c1.

xr �
dx
dt

� sec x,  cos x dx � dt.

v � [xr, yr, zr] � [sec x, csc x, 0]

curl v � [0, 0, �cos x csc2 x], div v � sec x tan x

curl v � [�2ye�y2

, �2ze�z2

, �2xe�x2

]

v � 0
x2 � y2 � z2 � r 2r0 � 0curl v � 0

[x(z3 � y3), y(x3 � z3), z(y3 � x3)

curl v � [0, 0, (6x � 8y)]
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The helix obtained lies on the cylinder of radius and axis the z-axis.

Indeed, 

14. Project. Parts (b) and (d) are basic. They follow from the definitions by direct

calculation. Part (a) follows by decomposing each component accordingly.

(c) In the first component in (1) we now have instead of v3, etc. Product

differentiation gives . Similarly for the other five terms in

the components. and the corresponding five terms give and the

other six terms , etc. give f curl v.

(d) For twice continuously differentiable f the mixed second derivatives are equal,

so that the result follows from and (1), which gives

(e) Write out and compare the 12 terms on either side.

15. [1, 1, 1], same (Why?)

16. . Confirmation by (c) Project 14:

Note that because v is a gradient field, namely, Hence the

result is confirmed.

17.
18.

Confirmation by (e) in Project 14:

19.
20.

Confirmation. By Problem Set 9.7, 

From this and Problem Set 9.8, 

 � 2( yz � zx � xy).

 � 0 � 0 � 2[1, 1, �1] � [yz, xz, xy]

 � f 	2g � g	2f � 2	f � 	g

 div (	( fg)) � div ( f 	g) � div (g	f )

	( fg) � f 	g � g	f.

� (x � y � z) xy)]) � 2(yz � zx � xy)

div ([(xyz � (x � y � z)yz) � (xyz � (x � y � z) xz) � (�xyz
[2xy � z � x, 2z � xy � y2, 2xy � z � zx], same (why?)

 � 2x � 2y � 2z

 � y � z � z � x � x � y � 0

 � [(y � z), (z � x), (x � y)] � [1, 1, 1] � u � curl (	f )

 div (u � v) � v � curl u � u � curl v

 � 2x � 2y � 2z

 div (u � v) � div [(x2 � yz), (y2 � zx), (z2 � xy)]

2y � 2z � 2x, 0 (why?), x � y � z

v � grad f.g curl v � 0

(	g) � v � [ yz, zx, xy] � [y � z, z � x, x � y] � [x2(z � y), y2(x � z), z2(y � x)].

[x2(z � y), y2(x � z), z2(y � x)]

curl (	f ) � [( fz)y � ( fy)z]i � [( fx)z � ( fz)x] j � [( fy)x � ( fx)y]k.

	f � fxi � fy 
j � fzk

f # (v3)y

(grad f ) � vfyv3

( f v3)y � fyv3 � f # (v3)y

f v3

 � a2 sin2 t � 2ab cos t sin t � b2 sin2 t � a2 � b2.

 x2 � y2 � a2 cos2 t � 2ab cos t sin t � b2 sin2 t

2a2 � b2
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SOLUTIONS TO CHAPTER 9 REVIEW QUESTIONS AND PROBLEMS, 

page 409

12.
14. undefined

16. is the projection of a in the

direction of b. Similarly, is the projection of b in the direction of a.

18. illustrates the triangle inequality (7) in Sec.

9.2.

20. If Always.

22. should have no x-component; thus 

and arbitrary.

24. We are looking for the normal vectors and We obtain

25.
26. The condition is . The answer is or v and w are

orthogonal, so that the numerators are zero and the size of the denominators does not

matter.

28. The moment of a force p about a point Q is zero if or p
is acting in a straight line through Q, which makes p and r parallel (or exactly opposite

or ).

30. This is a helix. P corresponds to . By differentiation, 

At P the velocity is . The speed is . The acceleration

vector is It is parallel to the xy-plane. Its absolute

value, the acceleration, is constant, just as the speed, namely, 

31. 5/3

32. is The value of f at P is .

Hence the value of f grad f at P is .

33. 1, 

34.
35. 0, same (why?), 

36.
37.

38. has at P the value

39.
40. 0 since v appears in two rows (component wise) of this scalar triple product.

3>25

[4, 2, 0] � [1, �1, 0]

117 � 4 � 1 � 2
� 2>220 � 1>25

Dv  
f �

grad f � v

ƒ v ƒ

�
[4z, 2y, (x � z)] � [z, �z, (x � y)]

117z2 � 4y2 � x
2� 2zx

[0, 2, 4]

�16

2z2 � 2x(x � y)

[0, 0, 3], [0, 0, �2x � 2y]

2y � 4z

[�3, 3, 9]

�3[1, �1, �3].grad f � [ z, � z, (x � y)] at P : [0, 3, 1]

ƒ rs(t) ƒ � 4.

rs(t) � [�4 cos t, �4 sin t, 0].

ƒ v ƒ � 5v � rr � [�213, 2, 3]

rr(t) � [�4 sin t, 4 cos t, 3].

t � p>3
r � 0

p � 0m � ƒ m ƒ � ƒ r � p ƒ

ƒ v ƒ � ƒ w ƒv • w> ƒ w ƒ � w • v> ƒ v ƒ

[2, 3, 0] � [6, 7, 0] � 33

g � arccos 
6

1108
� 0.9553 � 54.73°.

[1, �1, 2].[�1, 1, 4]

v3v2

4 � 3 � 6 � v1 � 0, v1 � �1,a � b � c � v
u � v � 0.

1110 � 10.49 � 165 � 135 � 13.98

5>165

[4>165, 7>165, 0], [3>135, �1>135, 5>135]; 5>135

�1250, �1250, �1250,

[0, 0, 50], [2, �19, �5], [�2, 19, 5], 0
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