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CHAPTER 10 Vector Integral Calculus. Integral Theorems

SECTION 10.1. Line Integrals, page 413

Purpose. To explain line integrals in space and in the plane conceptually and technically
with regard to their evaluation by using the representation of the path of integration.

Main Content, Important Concepts

Line integral (3), , its evaluation

Its motivation by work done by a force (“work integral”)

General properties (5)

Dependence on path (Theorem 2)

Background Material. Parametric representation of curves (Sec. 9.5); a couple of review
problems may be useful.

Comments on Content
The integral (3) is more practical than (8) (more direct in view of subsequent material),
and work done by a force motivates it sufficiently well.

Independence of path will be settled in the next section.

Further Comments on Text and Problem Set 10.1
Examples 1 and 2 show that the evaluation of line integrals in the plane and in space is
conceptually the same, making the difference just a technical one.

Example 3 illustrates a main motivation of (3), which we take as a definition of line
integral.

Theorem 1 and Project 12 in the problem set concern direction preserving and reversing
transformations of line integrals, as they are needed in various applications.

Kinetic energy appears in connection with the work integral; see Example 4.
The basic fact of path dependence is emphasized in Theorem 2 and again in Project 12.
Problems 2–11 and 15–20 concern the evaluation of integrals (3) and (8), respectively.

SOLUTIONS TO PROBLEM SET 10.1, page 418

2. , so that the integrand is

Integration gives The limits of integration are 0 and 1, so that the answer
is 

3. 4

4. For instance, we may take parametric form of the line to be

Then we obtain the integrand

Integration between the limits 0 and 1, gives �4

 � 4 � 16t

 � [2, 4 � 8t] � [�2, 2].

 F(r (t)) � rr � [2, (2 � 2t)2 � 4t)2] � [�2, 2]

r � [2 � 2t, 2t], (0 � t � 1).

�3/10.

1
5t 5 � 1

2t 4.

F (r (t)) � rr � [t 4, �t 2] � [1, 2t] � t 4 � 2t 3.

r � [t, t 2]

(3r)
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5.
6. Helix on the cylinder 

Answer:

8. C looks similar to the curve in Fig. 210, Sec. 9.5. The integrand is

Integration from to gives the answer

.

9. 8.5, 0

10. Here we integrate around a triangle in space. For the three sides and corresponding
integrals we obtain

Hence the answer is .

11. “Exponential helix”, 

12. Project. (a) . From we
obtain . Hence the integral is

Setting , we have and

Now , so that the integral is

.

(b) . The integral is

(c) The limit is . The first portion of the path gives 0, since . The second
portion is , so that . Hence the
integrand is , which upon integration gives .� 

1
3�t 2

F(r2(t)) � [t, �t 2], rr � [0, 1]r2 � [1, t]
y � 0� 

1
3

�
1

0

(t n�1 � nt 3n�1) dt �
1

n � 2
�

1
3

 .

r � [t, t n], F(r(t)) � [t n�1, �t 2n], rr � [1, nt n�1]

�
2p>2

0

(�2p cos p2 sin2 p2 � 2p cos p2 sin2 p2) dp � �
2
3

rr � [�2p sin p2, 2p cos p2]

F(r(p)) � [cos p2 sin p2, �sin2 p2].

r � [cos p2, sin p2]t � p2

�2�
p>2

0

cos t sin2 t dt � � 
2
3

 .

F(r(t)) � [cos t sin t, �sin2 t]
F � [ xy, �y2]r � [cos t, sin t], rr � [�sin t, cos t]

�3 e�t � e�t2, 4 � 3 e�2 � e�4

�1>3 � 1>3 e6p.

3
2

F(r3(t)) � [1 � t, �1 � t, 2 � 2t], �
1

0

(�2 � 2t) dt � �2 � 1.

 r3 � [1 � t, 1 � t, 1 � t], r3r � [�1, �1, �1],

 r2 � [1, 1, t], r2r � [0, 0, 1], F (r2 (t)) � [1, �t, 2], �
1

0

2 dt � 2

 r1 � [t, t, 0], r1r � [1, 1, 0], F (r1 (t)) � [t, 0, 2t], �
1

0

t dt �
1
2

e1>2 � sinh 14 � cosh 18 � 2

t � 1
2t � 0

 � et � 2t cosh t2 � 3t2 sinh t3.

 F (r (t)) rr  (t) � [et, cosh t2, sinh t3] [1, 2t, 3t2]

�8p � 2p22 cos t].
2 sin t �t � 2 sin t,x2 � z2 � 4, F (C ) � [2 cos t � t,

r � [2 cos t, 2 sin t], 0 � t � p>2; 23 � p.
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14. . The derivative is

The expression in parentheses (. . .) has the root , but no further real roots. Hence
the maximum of is taken at (3, 4), so that we obtain the bound

Calculation gives . The integral is

The result is typical, that is, the point of the ML-inequality is generally not to obtain
a very sharp upper bound for integrals, but to show that an integral remains bounded
in some limit process.

Also, instead of L, you may sometimes have to be satisfied with using an upper
bound for L if L itself is complicated.

16. integrated from 0 to 1 gives

The projection of this space curve into the xy-plane is a curve. Its projection
into the xz-plane is a curve. From these projections one can conclude the general
shape of C.

18. integrated from 0 to gives

20. C is an exponentially increasing curve in the plane from (0, 0, 0) to 
The representation of C gives

Integration from 0 to 5 gives

SECTION 10.2. Path Independence of Line Integrals, page 419

Purpose. Independence of path is a basic issue on line integrals, and we discuss it here in
full.

Main Content, Important Concepts

Definition of independence of path

Relation to gradient (Theorem 1), potential theory

Integration around closed curves

Work, conservative systems

Relation to exactness of differential forms

[4e5 � 1, 4e5 � 1, 625].

F(r(t)) � [tet, tet, t 4].

(5, 5, e5).x � y

c� 
1

12
� 1, 

1

12
, 0 d .

p>4F(r(t)) � [sin t, cos t, 0]

sinh 
cosh 

3
2 � sinh 1 � 5 cosh 1 � 5 � sinh 1 � 5 cosh 1 � 7

2.

3t � cosh t � 5 sinh t

�
3

0

A t 2 �
16
9

 t B  dt � 9 � 8 � 17.

rr � [1,  43 ], F(r(t)) � [t 2,  43 t]

L ƒ F ƒ � 5281 � 16 � 5297 � 50.

ƒ F ƒ

t � 0

1
2 [t 4 � 16

9  t 2]�1>2(4t 3 � 32
9  t).

r � [t, 43 t], 0 � t � 3, L � 5, ƒ F ƒ � 2t 4 � 16
9  t 2

c10.qxd  7/12/11  3:51 PM  Page 190



Instructor’s Manual 191

Comment on Content
We see that our text pursues three ideas by relating path independence to (i) gradients
(potentials Theorem 1), (ii) closed paths (Theorem 2), and (iii) exactness of the form under
the integral sign (Theorem ). The complete proof of the latter needs Stokes’s theorem,
so here we leave a small gap to be easily filled in Sec. 10.9.

It would not be a good idea to delay introducing the important concept of path
independence until Stokes’s theorem is available.

Simple connectedness of domains is further emphasized in Example 4.
The determination of a potential is shown in Example 2.
Problem 1, writing a report on the concepts and relations in this section, should help

to understand the various ideas.
The remaining problems shed light on path dependence and independence from several

angles, with experimentation and computer application.

SOLUTIONS TO PROBLEM SET 10.2, page 425

2. No. The origin is a boundary point of this “degenerate annulus,” which therefore is
not simply connected (but doubly connected).

3.
4. The exactness test for path independence gives

.

We find , where

so that for the integral we have 

6. For the dx-term and the dy-term, the exactness test of path independence gives 
, etc. We find 

.

Evaluation at the limits gives

.

8. The test for independence gives Hence evaluating at the limits, we get

10. Project. (a) .

(b) , represents the first part of the path. By integration we
obtain . On the second part, . Integration gives

. Equating the derivative of the sum of the two expressions to zero gives
. The corresponding maximum value of I is 

.

(c) The first part is . The integral over this portion
is . For the second portion , the integral is

For we get , the same as in (b) for . This is theb � 1I � 0.75c � 1(1 � c3)>3.
r � [t, 1], c � t � 1c3>4 � c>2

y � x>c or r � [t, t>c], 0 � t � c

0.78452
1>(612) � 2

3 �b � 1>12 � 0.70711
2(1 � b3)>3

r � [1, t], b � t � 1b>4 � b2>2
r � [t, bt], 0 � t � 1

2y2 � x2 from (6*)

f (2, p, 1>2) � f (1, 3>4, p) � 2 �
1

22
� 1.29.

f � x sin yz.

1
2 (e2 � 1)

f � 1
2 exp (x2 � y2 � z2)

y2 � z2 � 2xyex 2

� y2 � z2
2xyex 2

�

f (9, 1) � f (4, 0) � 29e2 � 24e0 � 20.17.

f  (x, y) � 2xe2y

F � grad f

(F2 )x �
e2y

1x
� (F1 )y

sin 3x sin y2, 1.

3*
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maximum value of I for the present paths through because the derivative of I
with respect to c is positive for .

12. CAS Experiment. The circle passes through and if its center P lies on
the line , so that P is , a arbitrary. Then the radius is

.

One would perhaps except a value near , for which the circle is smallest. The
experiment gives for the circle

a minimal value , approximately, of the integral when ,
approximately.

13.
14. Dependent; indeed, we obtain

.

16. Independent, 

17. Dependent, etc.

18. Dependent because for

we obtain

20. The point of the problem is to make the student think of the nature of (6) and .
The constructions are trivial. Start from an F satisfying (6), for instance, 
and, to violate the third equation , add to a function of y, e.g., y.

SECTION 10.3. Calculus Review: Double Integrals. Optional, page 426

Purpose. We need double integrals (and line integrals) in the next section and review
them here for completeness, suggesting that the student go on to the next section.

Content

Definition, evaluation, and properties of double integrals

Some standard applications

Change of variables, Jacobians (6), (7)

Polar coordinates (8)

Historical Comment
The two ways of evaluating double integrals explained in the text give the same result.
For continuous functions this was known at least to Cauchy. Some calculus books call
this Fubini’s theorem, after the Italian mathematician GUIDO FUBINI (1879–1943;
1939–1943 professor at New York University), who in 1907 proved the result for arbitrary
Lebesgue-integrable functions (published in Atti Accad. Naz. Lincei, Rend., 161, 608–614).

Comments on Text and Problems
We can present here only an absolute minimum of what we shall need, and students should
be encouraged to supplement this by material from their calculus books, if needed.

F1 � 1(6r)
F � [1, 1, 1]

(6r)

curl F � [�3x cos xy, 3y cos xy, 0] � 0.

F � [yz cos xy, xz cos xy, �2 sin xy]

2 � 0,

f � yex � zey, bea � ceb

sinh xz � zx cosh xz � �sinh xz � zx cosh xz

e�a2

sin 2b

a � 0.4556Imin � 50.85137100

r � [a � r cos t, 1 � a � r sin t]

a � 1
2

r � 2a2 � (1 � a)2

(a, 1 � a)y � 1 � x
(1, 1)(0, 0)

0 � c � 1
(c, 1)
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Centers of gravity of other domains (cross sections appearing in engineering design)
can be found in engineering handbooks.

SOLUTIONS TO PROBLEM SET 10.3, page 432

2. Integration over y gives . Integration over x now gives the answer .

3.
4. This order of integration is less practical since it requires splitting the integral into

two parts

Integration over y, we get from the first part

The other part gives , too. Answer: 

5.

6.

7.

8. After the integration over x, we have

10.

12. for reasons of symmetry. Since the given R and its left half (the triangle with
vertices (0, 0), , have the same , we can consider that half, for which

. We obtain

Note that is the same value as in the next problem (Prob. 13), for obvious reasons.y

 �
4
bh

#
1
2

 a2h
b
b

2

#
1
3

 ab
2
b

3

�
h
3

 .

 y �
4
bh

 �
b>2

0
�

2hx>b

0

y dy dx �
4
bh

 �
b>2

0

 
1
2

 a2hx
b
b

2

dx

M � 1
4 

bh
y(b>2, h))(b>2, 0)

x � b>2

�
1

0
�

1�x2

0
�

1�x2

0

dy dz dx � �
1

0
�

1�x2

0

(1 � x2) dz dx �
8

15

�
p>4

0

 
1
3

 cos3 y sin y dy �
1
16

 .

�sinh x � sinh 2x, 12 � cosh 1 � 1
2 cosh 2

�sinh y � sinh 2y, 12 � cosh 1 � 1
2 cosh 2

�
1

0

3 x � 3 x2
� 4 x3

� 4 x5 dx � 5>6

�16>3.�8>3

�
0

�2

 [x
2(2 � x) � 8>3 � 1>3 x3 ] dx � �8>3.

�
2

0
�

2

x

(x2 � y2) dy dx.�
0

�2
�

2

�x

(x2 � y2) dy dx �

�4
3 y3, �16

3

2>38>3x3
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14. The total mass is

We thus obtain by symmetry and

With and this gives the answer to Prob. 15.

16. from Prob. 15 without calculation.

18. We obtain

Each of these two halves of R contributes half to the moment about the x-axis.
Hence we could have simplified our calculation and saved half the work. Of course,
this does not hold for . We obtain

20. We denote the right half of R by , where is the rectangular part and 
the triangular. The moment of interia of with respect to the x-axis is

Ix1 � �
b>2

0
�

h

0

y2 dy dx � �
b>2

0

 
h3

3
 dx �

1
6

 bh3.

R1Ix1

R2R1R1 ´ R2

 �
1
32

 b3h �
11
96

 b3h �
7
48

 b3h.

 � �
b>2

0

x2 a2hx
b
b dx � �

b

b>2

x2 a2h �
2hx
b
b dx

 Iy � �
b>2

0
�

2hx>b

0

x2 dy dx � �
b

b>2
�

2h�2hx>b

0

x2 dy dx

Iy

Ix

 �
1
24

 bh3 �
1
24

 bh3 �
1
12

 bh3.

 � �
b>2

0

 
1
3

 a2hx
3
b

3 

dx � �
b

b>2

 
1
3

 c2h a1 �
x
b
b d

3 

dx

 Ix � �
b>2

0
�

2hx>b

0

y2 dy dx � �
b

b>2
�

2h�2hx>b

0

y2 dy dx

x � y � 4r>3p

r2 � rr1 � 0

 �
4(r 2

3 � r 1
3)

3p(r 2
2 � r 1

2)
 .

 �
2

(r 2
2 � r 1

2)
� 2 �

1
3

 (r 2
3 � r 1

3)

 y �
2

p(r 2
2 � r 1

2)
�

y2

r1

(r sin u) r dr du

x � 0

M � �
p

0
�

r2

r1

r dr du �
p

2
 (r 2

2 � r 1
2).
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Similarly for the triangle we obtain

Together, 

and .

is the same as in Prob. 19; that is, 

.

This can be derived as follows, where we integrate first over x and then over y, which
is simpler than integrating in the opposite order, where we would have to add the two
contributions, one over the square and the other over the triangle, which would be
somewhat cumbersome. Solving the equation for the right boundary

for x, we have

and thus

Now we multiply by 2, because we considered only the right half of the profile.

SECTION 10.4. Green s Theorem in the Plane, page 433

Purpose. To state, prove, and apply Green’s theorem in the plane, relating line and double
integrals.

 �
h
96

 (a3 � a2b � ab2 � b3) �
h(a4 � b4)
96(a � b)

 .

 � �
h

0

1

24h3
 (ah � (a � b)y)3 dy

 
1
2

 Iy � �
h

0
�

(ah�(a�b)y)>2h

0

x2 dx dy

x �
1

2h
 (ah � (a � b)y)

y �
h

a � b
 (a � 2x)

Iy �
h(a4 � b4)
48(a � b)

Iy

Ix �
1
12

 h3(3b � a)
1
2

 Ix �
h3

24
 (3b � a)

 �
1
24

 h3(a � b).

 � �
a>2

b>2

 
1
3

 
h3(2x � a)3

(b � a)3
 dx

 Ix2 � �
a>2

b>2
�

h(2x�a)>(b�a)

0

y2 dy dx

R2
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Comment on the Role of Green’s Theorem in the Plane
This theorem is a special case of each of the two “big” integral theorems in this chapter,
Gauss’s and Stokes’s theorems (Secs. 10.7, 10.9), but we need it as the essential tool in
the proof of Stokes’s theorem.

The present theorem must not be confused with Green’s first and second theorems in
Sec. 10.8.

Comments on Text and Problems
Equation (1) is the basic formula in this section and later on in applications of Theorem 1.
Eq. shows its vectorial form, and other forms of Green’s theorem are included in Project
12 of the problem set.

The proof of Theorem 1 proceeds componentwise, (2) and (3) relating to when  
For the calculation is similar, with a change of the direction of an

integration as noted in the proof.
Cancelation of integrals over subdivisions, as it occurs here (see Fig. 238), is a standard

idea that will occur quite often in the sequel.
The important Examples 2–4 need no further comments.
The resulting integral formula (9) has applications in theory and practice.
A basic formula for harmonic functions (solutions of Laplace’s equation whose second

partial derivatives are continuous) is considered in Probs. 18–20.
All these formulas and calculational problems emphasize the great importance of the

present theorem.

SOLUTIONS TO PROBLEM SET 10.4, page 438

1.

2. Integrate over y from to 2 and the result over x from
to 2, obtaining 

3.

4. We obtain

5.

6. . Evaluation gives

.

7. [Note that Prob. 7 is not affected, since the region R is not changed.]

� cosh (1) � 2 sinh (1) �14>3 cosh (3) � 2 sinh (3) � 1>3 cosh (9)

�
3

1

(�2 sinh (x) x � sinh (x) � sinh (3x)) dx

�
3

1
�

3x

x

(�sinh x � cosh y) dy dx

2x � 2y, 2x(1 � x2) � (2 � x2)2 � 1, x � �1..1, 55
15

 �
1
4

 �
1
4

  cosh 2 �
1
4

  sinh 2

 � �
1

0

(�x sinh (2x2) � x sinh (2x)) dx

�
1

0
�

x

x2

2x cosh 2y dy dx �

(F2)x � (F1)y � �y2e�x � 3>8 x2e�y, �8 � 9e�2 � e�3

�128.�2
�2(F2)x � (F1)y � 20x3 � 6y2

�
2p

0

1>4 (sin (t))2
� 1>4 (cos (t))2

� p>2

F2 when F1 � 0
F2 � 0.F1

(1r)
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8. , so that the integral around a closed curve is zero. Also the
integrand in (1) on the left is identically zero.

10. This is a portion of a circular ring (annulus) bounded by the circles of radii 1 and 2
centered at the origin, in the first quadrant bounded by and the y-axis. The
integrand is . We use polar coordinates, obtaining

12. Project. We obtain div F in (11) from (1) if we take . Taking
as in Example 4, we get from (1) the right side in (11), 

.

Formula (12) follows from the explanation of .
Furthermore, times the area of the disk of radius 2 gives 
For the line integral in (11) we need

where s varies from 0 to . This gives

.

In (12) we have and 

which gives zero upon integration from 0 to .

14. , so that we obtain

 �
2
3

�
2
3

�
4
3

 .

 � c x �
1
3

 x3 �
2
3

 (1 � x2)3>2 d `
1

0

 � �
1

0

(1 � x2 � 2x21 � x2 ) dx

 �
1

0
�
21�x2

0

(2y � 2x) dy dx

	2w � 2y � 2x

4p

F • rr � �14 cos 
s
2

 sin 
s
2

� 6 cos 
s
2

 sin 
s
2

� �10 sin s

curl F � 0

�
C

 F • n ds � �
C

 (7xyr � 3yxr) ds � �
4p

0

a14 cos2 
s
2

� 6 sin2 
s
2
b ds � 16p

4p

r � c2 cos 
s
2

 , 2 sin 
s
2 d ,  rr � c�sin 

s
2

 , cos 
s
2 d , n � [yr, �xr]

16p.div F � 7 � 3 � 4
(1r)

(F � n) ds � aF2 
dy

ds
�  F1 

dx
ds
b ds � F2 dy � F1 dx

n � [ yr, �xr]
F � [F2, �F1]

 � �2.155.

 � �ln 2 �
31

1512

 � (ln 2) acot 
p

2
� cot 

p

4
b �

62
15

 acos3 
p

2
� cos2 

p

4
b

 � �
p>2

p>4

c� 
ln 2

sin2 u
�

2
5

 (32 � 1) cos2 u sin u d  du

�
p>2

p>4
�

2

1

a� 
1

r 2 sin2 u
� 2r 3 cos2 u sin ub r dr du

�1>y2 � 2x2y
y � x

F � grad (e�x cos y)

c10.qxd  7/12/11  3:51 PM  Page 197



198 Instructor’s Manual

Confirmation in polar coordinates. We have , so that

16. . Answer: . Confirmation: For C, use 

.

The corresponding unit tangent vector is

.

The outer unit normal vector is 

.

Furthermore, 

so that

and

18. Set and in Green’s theorem, where subscripts x and y denote
partial derivatives. Then because , and

where primes denote derivatives with respect to s.

20. The integrand on the left is Integration over y gives

.4x2y � 4
3 y3

ƒ grad w ƒ
2 � 4(x2 � y2).

 � w(grad w) • n ds � w 
0w
0n

 ds

 � w(grad w) • ( yri � xrj) ds

 F1 dx � F2 dy � (�wwyxr � wwzyr) ds

	 2w � 0(F2)x � (F1)y � wx
2 � wy

2
F2 � wwxF1 � �wwy

�
4p

s�0

 4 ds � 16p.

(grad w) • n � 4 cos2 
s
2

� 4 sin2 
s
2

� 4

grad w � [2x, 2y] � c2 � 2 cos 
s
2

, 2 � 2 sin 
s
2 d ,

n � c cos 
s
2

 , sin 
s
2 d

r
#

� c�sin 
s
2

 , cos 
s
2 d

r � c2 cos 
s
2

, 2 sin 
s
2 d

4 � 4p	2w � 2 � 2 � 4

 �
2
3

 (1 � 1) �
4
3

 .

 �
2
3

 (sin u � cos u) `
1

0

 � �
p>2

0

 
2
3

 (cos u � sin u) du

 �
p>2

0
�

1

0

2r (cos u � sin u) r dr du

	2w � 2r cos u � 2r sin u
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We have to integrate over y from 0 to . These limits give in the previous
formula

Integration over x now gives

Inserting the limits 0 and 1 we finally have the answer 

SECTION 10.5. Surfaces for Surface Integrals, page 439

Purpose. The section heading indicates that we are dealing with a tool in surface integrals,
and we concentrate our discussion accordingly.

Main Content, Important Concepts

Parametric surface representation (2) (see also Fig. 241)

Tangent plane

Surface normal vector N, unit surface normal vector n

Short Courses. Discuss (2) and (4) and a simple example.

Comments on Text and Problems
The student should realize and understand that the present parametric representations are
the two-dimensional analog of parametric curve representations.

Examples 1–3 and Probs. 1–8 and 14–19 concern some standard surfaces of interest in
applications. We shall need only a few of these surfaces, but these problems should help
students grasp the idea of a parametric representation and see the relation to representations
(1). Moreover, it may be good to collect surfaces of practical interest in one place for
possible reference.

SOLUTIONS TO PROBLEM SET 10.5, page 442

1. Straight lines 

2. Circles, straight lines through the origin. A normal vector is

At the origin this normal vector is the zero vector, so that (4) is violated at (0, 0).
This can also be seen from the fact that all the lines pass through the origin,
and the curves (the circles) shrink to a point at the origin. This is a
consequence of the choice of the representation, not of the geometric shape of the
present surface (in contrast with the cone, where the apex has a similar property, but
for geometric reasons).

3. circles, straight lines, 

4. The parameter curves are ellipses, namely, the intersections of the cylinder
with planes ; a and b are their semi-axes. The curves are thev � constz � const

u � const

[�2cu cos v, �2cu sin v, 4u]z � c
22x2 � y2.

u � const
v � const

N � 4 i j k

cos v sin v 0

�u sin v u cos v 0

 4 � [0, 0, u] � uk.

�k.

2
3 .

4
3

 x3 � x4 �
4
3

�
(1 � x)4

4
 .

4x2(1 � x) � 4
3 (1 � x)3.

y � 1 � x
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generating straight lines of the cylinder, which are perpendicular to the xy-plane.
A normal vector is . Note that these normal vectors are
parallel to the xy-plane, which is geometrically obvious.

For we obtain the representation in Example 1 of the text.
Note further that the normal vectors are independent of u; they are parallel along

each generator , which is also geometrically obvious.

6. , helices (hence the name!), horizontal straight lines. This surface is
similar to a spiral staircase, without steps (as in the Guggenheim Museum in New
York). A normal vector is

.

8. , hyperbolas, parabolas; a normal vector is

.

10. is tangent to the curves , and is tangent to the curves , and
if and only if we have orthogonality, as follows directly from the definition

of the inner product in Sec. 9.2.

12. in Prob. 2 (polar coordinates); see the answer to Prob. 2. in Prob. 3
at the apex of the cone, where no tangent plane and hence no normal exists. In Probs.
5 (paraboloid) and 7 (ellipsoid) the situation is similar to that in the case of polar
coordinates. In Prob. 8 the origin is a saddle point. In each of these cases, one can
find a representation for which ; for Prob. 5 this is shown in Prob. 11. See
also Example 4 in the text for the sphere.

14. , hence

A normal vector is

More simply, [6, , 3] by applying grad to the given representation. Or [6, , 3]
by remembering that a plane can be represented by .

15.
16. Generalizing a representation of a sphere in the text suggests 

because then

and , so that the sum of the two expressions is , as
it should be.

17. For a sphere of radius 

18. suggests the parametrization and because the
, hence . Together,

r(u, v) � [4u cos v, u sin v, 4u]

z � 4u(cos2 v � sin2 v) � 16u2x2 � 16y2 � 16u2
y � u sin vx � 4u cos v,x2 � 16y2

[a2 cos2v cos u, a2 cos2 v sin u, a2 cos v sin v]

a, [a cos v cos u, 4.5 � a cos v sin u, �2.5 � a sin v], a � 1.5,

cos2 v � sin2 v � 11
9 z2 � sin2 v

x2 � y2 � cos2 v (cos2 u � sin2 u) � cos2 v

r(u, v) � [cos v cos u, cos v sin u, 3 sin v]

[1 � 4 cos u, �2 � 4 sin u, v], [4 cos u, 4 sin u, 0].

N � [x, y, z] � c
�9�9

N � 4 i j k

1 0 �2

0 1 3

 4 � [2, �3, 1].

r(u, v) � [u, v, 5 � 2u � 3v].

z � 5 � 2x � 3y

N(0, 0) � 0

N � 0N(0, 0) � 0

ru • rv � 0
u � constrvv � constru

[�2bu2 cosh v, 2au2 sinh v, abu]

z � x2>a2 � y2>b2

[sin v, �cos v, u]

z � arctan ( y>x)

v � const

b � a

[�b cos v, �a sin v, 0]

c10.qxd  7/12/11  3:51 PM  Page 200



Instructor’s Manual 201

and

.

20. Project. (a) and span varies over . The vanishing of the
scalar triple product implies that lies in the tangent plane .

(b) Geometrically, the vanishing of the dot product means that must be
perpendicular to , which is a normal vector of S at P.

(c) Geometrically, and span , so that for any choice of the
point lies in . Also, gives , so that passes
through P, as it should.

SECTION 10.6.  Surface Integrals, page 443

Purpose. We define and discuss surface integrals with and without taking into account
surface orientations.

Main Content

Surface integrals 

Change of orientation (Theorem 1)

Integrals (6) without regard to orientation; also (11)

Comments on Content
The right side of (3) shows that we need only N but not the corresponding unit vector n.

An orientation results automatically from the choice of a surface representation, which
determines and and thus N.

The existence of nonorientable surfaces is interesting but is not needed in our further
work.

Further Comments and Suggestions
Emphasize to your students that the integral of (3) is a scalar, and the orientation results
from N, that is, from the choice of parameters u, v.

Note further that the three terms in (5) give three double integrals over regions in the
coordinate planes.

(3) and (5) are compared in Example 1.

Example 2 is of a similar character.

Example 3 illustrates the effect of interchanging parameters, resulting in a factor minus,
in the result.

Orientability is extended beyond our need, but the student should see this excursion
into topology in Fig. 248 and perhaps also in Probs. 17 and 18.

Formula (8) and Examples 4 and 5 (sphere and doughnut) are typical applications of
(6), in which orientation no longer appears.

Moments of inertia of surfaces appear in engineering construction work from time to
time. A simple special case of constant distance (as well as of constant mass) is shown
in Example 6.

The text concludes with a look at representations .
Problems 1–11 concern integrals (3) and Probs. 12–16, more briefly, integrals (6).
Problems 17 and 18 are worth noting, also for historical reasons.
Further applications are shown in Probs. 19–25.

z � f (x, y)

rvru

(3) � (4) � (5)

T(P)z* � zx* � x, y* � yT(P)(x*, y*, z*)
x*, y*T(P)fy(P)fx(P)

	g
r* � r(P)

T(P)r* � r(P)
T(P)T(P). r*rv(P)ru(P)

N � ru � rv � [�4u cos v, �16u sin v, 4u]
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Problem 26 is important; it defines the first fundamental form of a surface and shows
that this form determines the metric on that surface, as was first shown in full generality
by Gauss.

SOLUTIONS TO PROBLEM SET 10.6, page 450

1.
2. , hence

Integration gives the answer 

3.
4. Quarter of a circular cylinder of radius 5 and height 2 in the first octant with the z-axis

as axis. A parametric representation is

.

From this we obtain

Integration over u from 0 to gives . Integration of this over v from
0 to 2 gives the answer

.

5.
6. . This is a parabolic cylinder, the parameter curves being parabolas

and straight line generators of the cylinder. For the normal vector we obtain

.

F on the surface is

.

This gives the integrand

.

Integration over v from 0 to u gives . Integration of this over u
from 0 to 1 gives the answer

.

7.
8. We may choose

.

The integrand is

.F • N � [tan (u cos v), u, cos v] • [0, �cos v, �sin v]

r � [u, cos v, sin v],  2 � u � 5, 0 � v � p>2

 F (r) � N � [0, cos u, sin v] � [1, �2, 0], 4 � 1
2p

2 � �0.9348

[�cosh u � u cosh u � sinh u] ƒ
1
0

� 1 � sinh 1 � �0.1752

�sinh u � u sinh u

F • N � �cosh v � sinh u

F(r(u, v)) � [cosh v, 0, sinh u]

N � [�1, �2v, 1]

r � [u, v, u � v2]

 F (r) � N � �u3(2 sin 2v � 1), 8p

2(e5 � 1) � 5(e2 � 1) � 2e5 � 5e2 � 3 � 262.88

e5 � 1 � 5ev1
2 p

 F • N � 5e5 sin u cos u � 5ev sin u.

 N � [5 cos u, 5 sin u, 0]

r � [5 cos u, 5 sin u, v],  0 � u � 1
2 p, 0 � v � 2

 F (r) � N � sin v (cos v sin2 u sin v�cos v cos2 u sin v) from (3). Section 10.5, p>6
2e � 1.

 � 1 � eu � ev.

 � [ev, eu, 1] • [1, 1, 1]

 F (r) • N � [ev, eu, 1] • ([1, 0, �1] � [0, 1, �1])

z � 1 � x � y, r � [u, v, 1 � u � v]

 F (r) � N � [u2, �v2, 0] � [�2, 3, 1] � �2u2 � 3y2 � �33
16
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Integration gives

.

9. Integrate to get

10. Portion of a circular cone with the z-axis as axis. A parametric representation is

From this,

, .

The integrand is

.

Integration over u from 0 to 2 gives

.

Integration of this over v from 0 to gives

.

12. . Integration gives

.

14. A normal
vector is

and . 

On S, 
.

The integrand is this expression times . Integration over u from 0 to gives

.

Integration over v from 0 to gives the answer

16. , hence 

.

Furthermore, 

, 

so that the integrand is 

.G(r) ƒ N(r) ƒ � vu24u2 � 1

ƒ N ƒ � 24u4 � u2

G(r) � arctan 
u sin v
u cos v � v

r � [u cos v, u sin v, u2]

1
2p(b � c)

p>2

0 � 2b cos2 v � pc sin v cos v

pcos v

G � a cos v cos u � b cos v sin u � c sin v

ƒ N ƒ � cos vr � [cos2 v cos u, cos2 v sin u, cos v sin v]

0 � v � p>2.0 � u � p,r � [cos v cos u, cos v sin u, sin v],

�
1

0
�

1�u

0

(cos u � sin v)13 dv du � (2 � cos 1 � sin 1)13 � 1.0708

r � [u, v, 1 � u � v], G(r) � cos u � sin v, ƒ N ƒ � 13

c� 
16
3

 sin3 v �
16
3

 cos3 v �
8192

3
 v d
p

0

� � 
32
3

�
8192

3
 p � 8567.98

p

�16 sin2 v cos v � 16 cos2 v sin v �
8192

3

F • n � �4u3 sin2 v cos v � 4u3 cos2 v sin v � 256u5

F � [u2 sin2 v, u2 cos2 v, 256u4]N � [�4u cos v, �4u sin v, u]

(0 � u � 2, 0 � v � p).r � [u cos v, u sin v, 4u]

3
2 sinh 3 � 15.027.

3 cosh v sin ur � [3 cos u, 3 sin v, v], 0 � u � p>3, 0 � v � 3.

�
p>2

0
�

5

2

(�u cos v � cos v sin v) dv du � �12
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Integration gives 

.

18. Möbius reported that Gauss had shown him the “double ring,” most likely in connection
with counting the intertwinements of two curves, physically related to the electromagnetic
field near two wires. Both Möbius and Listing independently published the invention of
the Möbius strip in 1858, three years after Gauss had died. It is possible that they got
the idea from Gauss, who usually published full theories, rather than isolated results.

Listing was a student of Gauss and the author of the earliest book on topology,
which he (and Riemann and others) called Analysis situs.

22. B is represented by . The square of the distance of a point (x, y, z) on
S from B is

S can be represented by

where . Hence the moment of inertia is (with 

24. Proof for a lamina S of density . Choose coordinates so that B is the z-axis and 
is the line in the xz-plane. Then

the second integral being zero because it is the first moment of the mass about a line
through the center of gravity.

For a mass distributed in a region in space the idea of proof is the same.

 � IB � 2k # 0 � k2M,

 � �
S

�(x2
� y2)s dA � 2k�

S

�xs dA � k2�
S

�s dA

 I� � �
S

�[(x � k)2
� y2]s dA � �

S

�(x2
� 2kx � k2

� y2)s dA

x � k
�s

 � hp a1 �
h2

6
b .

 � hp �
h3

12
� 2p

 � �
h

0

ap � av �
1
2

 hb
2

� 2pb dv

 I � �
h

 0
�

2p

0

c sin2 u � av �
1
2
 hb

2

d  du dv

dz � 1 # du dv)
dA � r du0 � u � 2p, 0 � v � h

r � [cos u, sin u, v],

(x � x)2 � (y � 0)2 � (z � 1
2 h)2 � y2 � (z � 1

2 h)2.

y � 0, z � h>2

 �
1

96
 p2(373>2 � 53>2) � 22.00

 �
p2

8
�

1
8

�
2
3

 (4u2 � 1)3>2 `
3

1

�
3

1
�
p>2

0

vu24u2 � 1 dv du �
p2

8 �
3

1

u24u2 � 1 du
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26. Team Project. (a) Use This gives (13) and (14) because

(b) E, F, G appear if you express everything in terms of dot products. In the numerator, 

and similarly in the denominator.

(c) This follows by Lagrange’s identity (Problem Set 9.3), 

(d) , etc.

(e) By straightforward calculation, , and (the coordinate
curves on the torus are orthogonal!), and . Hence, as expected, 

SECTION 10.7. Triple Integrals. Divergence Theorem of Gauss, page 452

Purpose, Content
Proof and application of the first “big” integral theorem in this chapter, Gauss’s theorem,
preceded by a short discussion of triple integrals (probably known to most students from
calculus).

Comment on Proof
The proof is simple:

1. Cut (2) into three components. Take the third, (5).

2. On the left, integrate over z to get

(8)

integrated over the projection R of the region in the xy-plane (Fig. 252).

3. Show that the right side of (5) equals (8). Since the third component of n is ,
the right side is

where minus comes from in Fig. 252, lower surface. This is the proof.
Everything else is (necessary) accessory.

Comments on Problems
Problems 1–8 concern triple integrals and Probs. 9–18 the divergence theorem itself.
Masses in space lead to triple integrals over the region of mass distribution; an application
to some standard regions is given in Probs. 19–25.

cos g � 0

 � ��F
3
(upper) dx dy � ��F

3
(lower) dx dy,

 ��F
3
 cos g dA � ��F

3 
dx dy

cos g

��[F
3
(upper surface) � F

3
(lower surface)] dx dy

���0F3

0z
 dz dx dy

2EG � F2 � b(a � b cos v).

G � b2
F � 0E � (a � b cos v)2

r � [u cos v, u sin v], ru � [cos v, sin v], ru • ru � cos2 v � sin2 v �1

 � EG � F2.

 ƒ ru � rv ƒ
2 � (ru � rv) • (ru � rv) � (ru • ru)(rv • rv) � (ru • rv)2

a • b � (ru gr � rv hr) • (ru pr � rv qr) � Egrpr � F (grqr � hrpr) � Ghrqr

dr • dr � ru • ru du2 � 2ru • rv du dv � ru • rv dv2.

dr � ru du � rv dv.
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SOLUTIONS TO PROBLEM SET 10.7, page 457

1. 40

2.

4. Integration over x from 0 to gives

Integration over y from 0 to 3 – z then gives

Integration over z from 0 to 3 finally gives the answer

.

Note that the region T in space is bounded by portions of the coordinate planes and
of the plane

, 

from which one obtains the limits of integration.

6. We can represent the region a portion of a solid cylinder, by

Then the volume element is

and the density is

Integration over r from 0 to 4 gives

Integration of this over u from 0 to gives

.

Integration of this over v from to 4 finally gives the answer

8. From (3) in Sec. 10.5 with variable r instead of constant a we have

Hence The volume element is

The intervals of integration are The integrand
is Integration over r, u, and v gives , and . The product of these
is the answer .4pa5>15

2
3a5>5, 2pr 4 cos3 v.

0 � r � a, 0 � u � 2p, 0 � v � 1
2 p.

dV � r 2 cos v dr du dv.

x2 � y2 � r 2 cos2 v.

x � r cos v cos u,  y � r cos v sin u,  z � r sin v.

65,536

9
 p � 22,876.4.

�4

512
3

 v2p

2p

2048
3

 (cos2 u sin2 u)v2.

s � r 4(cos2 u sin2 u)v2.

dV � r dr du dv

[r cos u, v, r sin u],  0 � r � 4, 0 � u � 2,  �4 � v � 4.

T: x2 � z2 � 16, ƒ y ƒ � 4,

x � y � z � 3

1 � 8.5e�3

e�z � 4e�3 � ze�3.

e�y�z � e�3.

3 � y � z

�
c

0
�

b

0
�

a

0

xyz2 dx dy dz �
1
2

 �
c

0

a2 yz2 dy dz �
1
4

 �
c

0

a2b2 z2 dz �
1
12

 a2b2c3
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10. The outer normal vectors of the faces are . This gives
, integrated over the two faces , and .

No contribution from the faces since , so that

.

The face gives . The face gives

times the area , hence 48, as expected. This calculation is so simple only
because of the simplicity of the surface and the region.

Let the student make a sketch so that he/she understands the form of the outer
normals.

12. Intervals of integration
. The integrand is . Integration over r, v, 

and u gives successively 

14. . Integration over z gives . Multiplication by the cross-
sectional area gives the answer

.

16. . Integration over z from 0 to gives .
Integration of this over y from 0 to gives . Integration of this
over x from 0 to 1 gives the answer .

18. . A parametrization of the cone is 

.

The volume element is r dr du dv. Integration over r from 0 to 2u gives

.

Integration over v from 0 to gives . Integration of this over u from 0
to 2 gives the answer .

20. From (3) in Sec. 10.5 with variable r instead of constant a we have

.

Hence . The volume element is . The
intervals of integration are . The integrand
is . Writing the integrals as a product of three integrals, integration over r,
u, and v gives , respectively. The product of these is the answer

.

22. . Integration over r from 0 to gives . Integration of this over x
from 0 to h gives . Answer: .

24. gives . For the moment is larger for the
cone because the mass of the cone is spread out farther than that of the paraboloid
when .

SECTION 10.8. Further Applications of the Divergence Theorem, 
page 458

Purpose. To represent the divergence free of coordinates and to show that it measures
the source intensity (Example 1); to use Gauss’s theorem for deriving the heat equation

x 
 1

Ixh 
 15>3h � 15>3ph510 � ph3>6
h3p>6h3>12

x2>41xr 2 � y2 � z2

8pa5>15
a5>5, 2p, and 43

r 4 cos3 v
0 � r � a, 0 � u � 2p, �1

2 p � v � 1
2p

dV � r 2 cos v dr du dvx2 � v2 � r 2 cos2 v

x � r cos v cos u,  y � r cos v sin v,  z � r sin v

16p
0 � 4pu32p

8
3 (sin v � cos v) � 2u3

[r cos v, r sin v, u]

div F � y � z � x

cosh 1 � 3
2 � 0.0431

1
2 (sinh x) (1 � x)21 � x

(1 � x � y) sinh x1 � x � ydiv F � �sinh x

9p(cos 2 � 1) � �40.04

cos 2 � 1div F � �sin z

729
5  cos v, 729

5 , 1458
5  p.

3r 4 cos v0 � r � 3, 0 � 2p, 0 � v � p2
div F � 2x2 � 3y2 � 3z2 � 2r 2, dV � r 2 cos v dr du dv.

2 � 6 � 12

F • n � [x2, 0, 4] • [0, 0, 1] � 4

z � 2F • n � [x2, 0, 0] • [0, 0, �1] � 0z � 0

F • n � [x2, 0, z2] • [0, �1, 0] � 0

n � [0, �1, 0]y � �3
�12 � 12 � 0�1 � 6 � 2 � �12F • n � �1

n � [�1, 0, 0]x � �1
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governing heat flow in a region (Example 2); to obtain basic properties of harmonic
functions.

Main Content, Important Concepts

Total flow (1) out of a region

Divergence as the limit of a surface integral; see (2)

Heat equation (5) (to be discussed further in Chap. 12)

Properties of harmonic functions (Theorems 1–3)

Green’s formulas (8), (9)

Short Courses. This section can be omitted.

Comments on (2)
Equation (2) is sometimes used as a definition of the divergence, giving independence
of the choice of coordinates immediately. Also, Gauss’s theorem follows more readily
from this definition, but, since its proof is simple (see Sec. 10.7. in this Manual), that
saving is marginal. Also, it seems that our Example 2 in Sec. 9.8 motivates the
divergence at least as well (and without integrals) as (2) in the present section does for
a beginner.

General Comments on Text and Problems
Team Project 12 shows how the ideas of the text in Theorems 1–3 can be further extended
and supplemented.

These ideas are basic in the theory of partial differential equations and their applications
in physics, where the latter have helped in the discovery of mathematical theorems on our
present level as well as in more general and more abstract theories, using functional
analysis and measure theory.

SOLUTIONS TO PROBLEM SET 10.8, page 462

2. A representation of the cylinder is

, 

which also equals the normal vector N, as is seen by geometry or by calculating
. Here varies from 0 to h and from 0 to . It follows that

.

Hence the directional derivative is

The integral over from 0 to or from is zero since the integrand is odd.
Integration of this over from 0 to h gives zero, as had to be shown.

3. The volume integral of 

The surface integral of over is
Others zero.16y3>3 � 16>3.

x � 1f 0g>0n � f � 8x � 8x f � 16y2x � 16y2

16y2 � [0, 4y] � [8x, 0] � 16y2 is 16
3 .

v � z
�p to p2pu

 � �16 cos2 u sin u.

 
0f

0n
� 	f • n � [�8 cos u sin u � 8 sin u cos u, 0] • [cos u, sin u]

n � [cos u, sin u]

2puv � zru � rv

r � [2 cos u, 2 sin u]
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4. . Integration of 4x over
the box gives 12. Also, for the six surfaces gives

6. The volume integral of is . The surface integral of

is and 0 for the other faces.

8. (make a sketch). For the disk , 

.

For the conical portion, whose normal vector has a negative z-component, hence the
minus sign in the formula, 

.

Together .

10. . In (2), Sec. 10.7, we obtain

12. Team Project. (a) Put in (8).

(b) Use (a).

(c) Use (9).

(d) is harmonic and on S. Thus in T by (b).

(e) Use and (2).

SECTION 10.9. Stokes s Theorem, page 463

Purpose. To prove, explain, and apply Stokes’s theorem, relating line integrals over closed
curves and surface integrals.

Main Content

Formula 

Further interpretation of the curl (see also Sec. 9.9)

Path independence of line integrals (leftover from Sec. 10.2)

(2) � (2*)

div (grad f ) � 	2f

h � const0h>0n � 0h � f � g

f � g

 � r cos �.

 � 2x2 � y2 � z2 cos �

 F • n � ƒ F ƒ ƒ n ƒ  cos �

F � [x, y, z], div F � 3

pha2>3

�
S2

�z dx dy � ��
2p

0
�

a

0

hr
a  r dr du � �2p 

h
a

 
a3

3
� �p 

2
3

 ha2

�
S1

�z dx dy � �
2p

0
�

a

0

hr dr du � 2ph 
a2

2
� pha2

S1: z � h, 0 � r � az � hr>a
�2

5 (x � 1) and 43 ( y � 1)

x2n • [0, 4y3, 0] � y4n • [2x, 0, 0] � n • [2xy4, 4y3, 0]

4
3 � 2

512x2y2 � 2y4

 (z � 3)   x[0, 0, 1] • [0, 2y, 6],   integral of 6x gives 3 � 2 � 6.

 (z � 0)   x[0, 0, �1] • [0, 2y, 0],   integral 0

 ( y � 2)   x[0, 1, 0] • [0, 4, 2z],   integral of 4x gives 2 � 3 � 6

 ( y � 0)   x[0, �1, 0] • [0, 0, 2z],   integral 0

 (x � 1)   1[1, 0, 0] • [0, 2y, 2z],   integral 0

 (x � 0)   0[�1, 0, 0] • [0, 2y, 2z],   integral 0

f 0g>0n
	2g � 4, grad f • grad g � [1, 0, 0] • [0, 2y, 2z] � 0
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Comment on Orientation
Since the choice of right-handed or left-handed coordinates is essential to the curl (Sec. 9.9),
surface orientation becomes essential here (Fig. 253).

Comment on Proof
The proof is simple:

1. Cut into components. Take the first, (3).

2. Using and , cast the left side of (3) into the form (7).

3. Transform the right side of (3) by Green’s theorem in the plane into a double integral
and show equality with the integral obtained on the left.

Further Comments on Text and Problems
Examples 1 and 3 show typical calculations in connection with Stoke’s theorem.

In connection with Example 2, emphasize that Green’s theorem in the plane (a special
case of Stokes’s theorem) was needed in the proof of the general case of Stokes’s theorem,
as is mentioned in Example 2 (but was perhaps missed by the student).

Basic applications of Stokes’s theorem to fluid flow and to work done in displacements
around closed curves are illustrated in Examples 4 and 5.

Problems 1–10 concern direct integration of surface integrals and Probs. 13–20 concern
the evaluation of such integrals with Stokes’s theorem as a tool for evaluating line integrals
around closed curves.

SOLUTIONS TO PROBLEM SET 10.9, page 468

2. The rectangle is represented by . The curl is

A normal vector of S is Hence

Integration over x from 0 to 2 and over y from 0 to gives the answer

4. The curl is

A normal vector of S is

Hence the integrand is

Integration over x from 0 to 1 and over y from 0 to 4 gives the answer

6. The curl is

A normal vector of S is

N � [0, 0, 1].

curl F � [0, 0, �3x2 � 3y2].

�28>3.

(curl F) • N � 0 � 2x2y � 2x.

N � [�y, �x, 1].

curl F � [0, 2z, �2x] � [0, 2xy, �2x].

�(�6 � 312).
p>4

(curl F) � N � �3 sin y.

N � [0, 0, 1].

curl F � [(1 � sinh z), 0, �3 sin y].

0 � x � 2, 0 � y � p>4, z � 4

N3N1

(2*)
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Hence the integrand is

where are polar coordinates. The integral is

Hence the answer is 

8. This is a portion of a cone. A representation is

The integrand is

Integration over u from 0 to h and v from 0 to (since ) gives

Hence the answer is 

10.
Integration over from 0 to gives 

14. The curl is

The circle is the boundary curve of a circular disk of radius 3 in the yz-plane with
normal [1, 0, 0]. Hence

To integrate, we introduce polar coordinates defined by

and obtain, using , 

.

16. The curl is

A normal vector is [0, 0, 1], as in Prob. 15. Hence the surface integral is (sketch the
triangle!)

�
1

0
�

x

0

�ey dy dx � �e � 2.

curl F � [0, �ex, �ey].

�
3

0
�

2p

0

3u2 (cos2 v) u du dv �
243p

4

dy dz � u du dv

r � [2, u cos v, u sin v]

(curl F) • N � 3y2.

curl F � [3y2, 3z2, 3x2].

�3p>4 � 3p>4.2pu

r � [cos u, sin u], F • rr � [sin3 u, �cos3 u] • [�sin u, cos u] � �sin4 u �  cos4 u.

�4h3>3.

� 
2h3

3
 (0 � 2 � 0) � � 

4h3

3
 .

y 
 0p

 � �2u2(cos v sin v � sin v � cos v).

 � [2u sin v, 2u, 2u cos v] • [�u cos v, �u sin v, u]

 (curl F) • N � [2y, 2z, 2x] • (�x, �y, 2x2 � y2]

r � [u cos v, u sin v, u]  (0 � u � h, 0 � v � p).

�3
2 p.

�3�
S

�(x2
� y2) dx dy � �3�

2p

0
�

1

0

r 2
� r dr du � � 

3
4

r 4
� 2p `

1

0

� � 
3
2

 p.

x � r cos u, y � r sin u

(curl F) • N � �3x2 � 3y2 � �3r 2
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18. S bounded by C can be represented by

A normal vector with a nonnegative z-component is

The curl is

The inner product is

Integration over u from 0 to (since ) and over v gives

20. A representation of the portion of the cylinder bounded by C is

A normal vector of the cylinder is

.

The curl is

and

.

Integration over u from 0 to and over v from 0 to gives .

SOLUTIONS TO CHAPTER 10 REVIEW QUESTIONS AND PROBLEMS,
page 469

11.
Or using exactness.

12. Exact. By integration we find that

, where

Substituting the limits of integration gives

13. Not exact, 
14. Not exact. Use Green’s theorem. We obtain

Hence

(curl F) • N � 3x2 � 3y2.

curl F � [0, 0, 3x2 � 3y2],  N � [0, 0, 1].

curl F � [0, �2x, �4 sinx], �24.

f ( 
1
2 , p, 1) � f (p, 1, 0) � sin 12 p � sin p � e1 � e0 � e.

f � sin xy � ez.F � grad f

r � [�4 � 6t, 3 � 5t], F(r) � dr � [�4(�4 � 6t)2, 6(3 � 5t)2] � [6, 5] dt; 874,

�4pp>2

(curl F) • N � �2 sin u sin v

curl F � [0, 0, �sin v]

N � ru � rv � [0, 2 cos u, 2 sin u]

r � [v, 2 cos u, 2 sin u],  (0 � u � p>2, 0 � v � p).

�
h

0
�
p

0

2 sin u du dv � 4h.

z 
 0p

(curl F) • N � 2 sin u.

curl F � [�2, 0, 1].

N � ru � rv � [0, 2 cos u, 2 sin u].

r � [v, 2 cos u, 2 sin u]  (0 � v � h, 0 � u � p).
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Using polar coordinates, we integrate

The answer is .

15. 0 since 

16. Not exact. We obtain

and

The inner product is

Integration gives

18. Use Stokes’s theorem. . Furthermore, 

The inner product is

.

Integration over u from 0 to 1, gives . Integration of this over v from
0 to 2 gives . Answer: 

20. Exact, . Integration from to (1, 1, 1) gives

.

21.

22. (why?), 

24. by symmetry. Furthermore,

and

.

25.
26. k drops out in both integrands and .y f>Mx f>M

M � 1
4k, x � 8

15, y � 1
3

y �
1
M

� �
1

�1
�

1�x4

0

y dy dx � �
1

�1

 
5
16

 (1 � x4)2 dx �
4
9

M � �
1

�1

(1 � x4) dx �
8
5

x � 0

y �
1
M �

p

0
�

a

0

(r sin t)r 2 � r dr dt �
8a
5p

M � pa4>4, x � 0

M � 27>2, x � 9
4, y � 5

4

e � cosh 2 � (e�1 � cosh 2) � 2 sinh 1

(�1, �1, 1)F � grad (exz � cosh 2y)

�4.�4
�p cos pv � 2

(curl F(r)) • N � �p(sin pu � cos pv)

 � [0, �p cos pu, �p(sin pu � cos pv)].

 curl F � [0, �p cos px, �p(sin px � cos py)]

r � [u, v, u], N � [�1, 0, 1]

8
3 cos3 t � 32

3  sin3 t ƒ

p

0 � � 
16
3 .

F • rr � �8 cos2 t sin t � 32 sin2 t cos t.

F(r) � [4 cos2 t, 4 sin2 t, 8 sin2 t cos t].

rr � [�2 sin t, 2 cos t, 3]

curl F � 0
�1875p>2

�
2p

0
�

5

0

3r 2 � r dr du �
1875

2
 p.
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28. . Answer: 

30. Direct integration. We have

From this, 

The inner product is

Integration of over v from 0 to gives 0. Integration of 
over u from 0 to gives . Integration of this constant over v from 0 to gives

(or if we change the orientation by interchanging u and v).

32. By direct integration. We can represent the paraboloid in the form

A normal vector is

On the paraboloid, 

The inner product is

.

Integration over v from 0 to gives Integration of this over u from
0 to 3 (note that varies from 0 to 9) gives .

34. By Gauss’s theorem, T can be represented by

, where .

The divergence of F is

The integrand is . Integration over r from 0 to 1 gives
Integration of this over u from 0 to gives . Integration

of this over v from 0 to 4 gives the answer 8 .p
pv2p1

3 cos u � 1
3 sin u � 1

2v.
(r cos u � r sin u � v)r

div F � y � z � x � r cos u � r sin u � v.

0 � r � 1, 0 � u � 2p, 0 � v � 4r � [r cos u, r sin u, v]

2p36>6 � 243pz � u2
0 � 0 � 2pu5.2p

F • N � �2u4 cos v sin2 v � 2u4 cos2 v sin v � u5

F � [u2 sin2 v, u2 cos2 v, u4].

N � ru � rv � [�2u2 cos v, �u2 sin v, u].

r � [u cos v, u sin v, u2].

� 4p�4p
2p�2p>2

�4 cos u sin u2pcos v � sin v

F • N � (�2 cos 2u)(cos v � sin v) � 4 cos u sin u.

 N � [�2 cos2u cos v, �2 cos u2 sin v, �4 cos u sin u].

 rv � [�2 cos u sin v, 2 cos u cos v, 0]

 ru � [�2 sin u cos v, �2 sin u sin v, cos u]

r � [2 cos u cos v, 2 cos u sin v, sin u]  (0 � u � 1
2 p, 0 � v � 2p).

4pabcdiv F � 3, V � 4
3 pabc
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